Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

Evaluation of CESM1 (WACCM) free-running and

specified-dynamics atmospheric composition simulations 2

using global multi-species satellite data records 3

- 4 Lucien Froidevaux¹, Douglas E. Kinnison², Ray Wang³, John Anderson⁴, and Ryan A. Fuller¹
- 5 ¹ Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA
- ² National Center for Atmospheric Research, Boulder, CO, USA 6 7 8
- ³ School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, GA, USA
- ⁴ School of Science, Hampton University, Hampton, VA, USA

9

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

10 Correspondence to: L. Froidevaux (lucienf@jpl.nasa.gov)

11 Abstract

We evaluate the recently delivered Community Earth System Model version 1 (CESM1) Whole Atmosphere Community Climate Model (WACCM) using satellite-derived global composition datasets, focusing on the stratosphere. The simulations include free-running (FR-WACCM) and specified-dynamics (SD-WACCM) versions of the model. Model evaluations are made using global monthly zonal mean time series obtained by the Aura Microwave Limb Sounder (MLS), as well as longer-term global data records compiled by the Global Ozone Chemistry and Related Trace gas Data Records for the Stratosphere (GOZCARDS) project. A recent update (version 2.20) to the original GOZCARDS merged ozone (O₃) data set is used. We discuss upper atmospheric climatology and zonal mean variability using O3, hydrogen chloride (HCl), nitrous oxide (N2O), nitric acid (HNO₃), and water vapor (H₂O) data. There are a few significant model/data mean biases, such as for lower stratospheric O3, for which the models overestimate the mean observed values and seasonal amplitudes. Another clear difference occurs for HNO₃ during recurring winter periods of strong HNO₃ enhancements at high latitudes; this stems from the known omission of ion chemistry relating to particle precipitation effects, in the global models used here. In the lower stratosphere at high southern latitudes, the variations in polar winter/spring composition observed by MLS are generally well matched by SD-WACCM, the main exception being for the early winter rate of decrease in HCl, which is too slow in the model. In general, the latitude/pressure distributions of annual and semi-annual oscillation amplitudes derived from the MLS data are properly captured by the corresponding model values. Nevertheless, detailed aspects of the interactions between the quasi-biennial, annual, and semi-annual ozone variations in the upper stratosphere are not as well represented by FR-WACCM as by SD-WACCM.

One of the evaluation diagnostics we use represents the closeness of fit between the model/data anomaly time series, and we also consider the correlation coefficients. Not surprisingly, SD-WACCM, which is driven by realistic dynamics, generally matches observed deseasonalized anomalies better than FR-WACCM does. Other results indicate that the root mean square variability is sometimes found to be significantly smaller in FR-WACCM than in SD-WACCM and the observations. Most notably, FR-WACCM underestimates the observed interannual variability for H₂O by ~30%, typically, and by as much as a factor of two in some regions; this has some implications for the time needed to detect small trends.

We have derived trends using a multivariate linear regression (MLR) model, and there is a robust signal in both MLS observations and WACCM of an upper stratospheric O₃ increase from 2005 to 2014 by ~ 0.2 -0.4%/yr (± 0.2 %/yr, 2 σ), depending on which broad latitude bin (tropics or mid-latitudes) is considered. In the lower stratosphere, while some decreases are indicated for 1998-2014 (based on merged GOZCARDS O3), we find near-zero or positive trends when using MLS O3 data alone for 2005-2014, albeit with no robust statistical significance. SD-WACCM results track such positive tendencies (albeit with no statistical significance). For H₂O, the most statistically significant trend result for 2005-2014 is an upper stratospheric increase, peaking at slightly more than 0.5%/yr in the lower mesosphere, in fairly close agreement with SD-WACCM trends, but with smaller values in FR-WACCM. For HCl, while the lower stratospheric vertical gradients of MLS trends are duplicated to some extent by SD-WACCM, the model trends (decreases) are always on the low side of the data trends. There is little model-based indication (in SD-WACCM) of a significantly positive HCl trend derived from the MLS tropical series at 68 hPa; this deserves further study. For N2O, the MLS-derived trends (for 2005-2012) point to negative trends (of up to about -1%/yr) in the NH midlatitudes and positive trends (of up to about +3%/yr) in the SH mid-latitudes, in good agreement with the asymmetry that exists

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

2

3

4

5 6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

in SD-WACCM trend results. The small observed positive N_2O trends of $\sim 0.2\%/yr$ in the 100 to 30 hPa tropical region are also consistent with model results (SD-WACCM in particular), which in turn are very close to the known rate of increase in tropospheric N_2O . In the case of HNO₃, MLS-derived lower stratospheric trend differences (for 2005-2014) between hemispheres are opposite in sign to those from N_2O and in reasonable agreement with both WACCM results, despite large error bars.

The data sets and tools discussed here for the evaluation of the models could be expanded to additional comparisons of species not included here, as well as to model intercomparisons using a variety of CCMs, keeping in mind that there are different parameterizations and approaches for both free-running and specified-dynamics simulations.

1 Introduction

State-of-the art chemistry climate models (CCMs) are known to reproduce the main features of stratospheric climatology and change, although there has always been some variability between the models (e.g., Waugh and Eyring, 2008; SPARC, 2010; Dhomse et al., 2018). Free-running CCMs are used to make long-term simulations of atmospheric composition, as well as predictions of future changes, driven by a large set of photochemical reactions, as well as time-dependent boundary conditions for surface concentrations of greenhouse gases and ozone depleting substances (ODSs), sea surface temperatures and sea ice concentrations, 11-year solar variability, sulfate aerosol surface area density, as well as tropospheric ozone and aerosol precursor emissions. In more recent years, modeling groups have implemented "specified-dynamics" versions that are constrained to meteorological fields (e.g., surface pressure, temperature, and horizontal and meridional winds). Our main purpose here is to evaluate these two types of model runs from CESM1 WACCM, using multi-species satellite-derived global composition datasets; we will refer to these two types as FR-WACCM, for the free-running model version, and SD-WACCM, for the specified dynamics version. The model simulations were based on scenarios defined by the Chemistry Climate Model Initiative (CCMI) (Eyring et al., 2013; Morgenstern et al., 2017). Our evaluation focus is on monthly zonal mean time series from the models versus satellite-derived global data sets. The main stratospheric (and mesospheric) time series used here are from Aura MLS products (version 4.2 data) and from the Global OZone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS), which include MLS data from late 2004 onward. The GOZCARDS data records include merged multi-satellite data files for O₃, H₂O₂, and HCl, and Aura MLS-derived data files for HNO₃ and N₂O; these 5 species are used for the model evaluations herein. We also focus, in part, on the Aura MLS high quality data sets for 2005-2014 (with 2014 being the last year of WACCM runs considered here). The regular and nearly uninterrupted daily global coverage of the MLS day and night measurements leads to minimal sampling-related biases, both for climatological comparisons (see Toohey et al., 2013) and trendrelated studies (Millan et al., 2016). This data set also has a well characterized set of error bars (see Livesey et al., 2018, for the latest update to the data quality documentation); however, we also note that there are some caveats to take into account regarding long-term stability for some of the MLS species.

In terms of the model/data comparisons, we will analyze the climatological mean state and "goodness of fit" issues, as well as variability. While one has the expectation that, in general, better fits to the data would be obtained for a specified-dynamics run than for a less dynamically constrained run (FR-WACCM), one needs to demonstrate this quantitatively with diagnostics that can provide enough differentiation between models that are sometimes found to track each other closely. There have been essentially no published trend studies using the Aura MLS data set by itself. However, this data set now covers a sufficiently long time period that it becomes useful to investigate such trends, as the analyses deal with one homogeneous data set, while removing the potential issues associated with data merging prior to 2005, whether related to poorer sampling, or to uncertainties in the bias removal between various data sets. On the downside, a shorter time series will also lead to larger uncertainties in the derived trends.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

We first provide (in Sect. 2) an overview of the global stratospheric data sets used for these comparisons. Brief descriptions of FR-WACCM and SD-WACCM are provided in Sect. 3. Climatological comparisons between the models and the Aura MLS data sets are provided in Sect. 4, in order to assess, for example, whether any obvious biases exist; these comparisons include an overview of the main short-term variations, namely the annual oscillation (AO) and semi-annual oscillation (SAO). More detailed comparisons of deseasonalized anomaly time series are provided in Sect. 5.1, where we evaluate how well the two model versions fit the data sets, both in terms of closeness of fits and variability. Finally, trend comparisons are investigated in Sect. 5.2.

2 Data sets

2.1 Aura MLS

The Microwave Limb Sounder (MLS) is one of four instruments on NASA's Aura satellite, launched on July 15, 2004. The MLS antenna scans the atmospheric limb as Aura orbits the Earth in a near-polar sun-synchronous orbit, and the instrument measures thermal emission (day and night) in narrow spectral channels, via microwave radiometers operating at frequencies near 118, 190, 240, and 640 GHz, as well as a 2.5 THz module to measure OH. MLS (see Waters et al., 2006) has been providing a variety of daily vertical stratospheric temperature and composition profiles (~3500 profiles per day per product), with some measurements extending down to the upper tropospheric region, and some into the upper mesosphere or higher. For more information and access to the MLS data, the reader is referred to http://disc.sci.gsfc.nasa.gov/Aura/data-holdings/MLS; the current data version is labeled 4.2x (with x varying between 0 and 3, depending on the date). Data users interested in MLS data quality and characterization, estimated errors, and related information, should consult Livesey et al. (2018), the latest update to the MLS data quality document (available from the MLS website at http://mls.jpl.nasa.gov).

21 2.2 GOZCARDS

The data considered here for longer-term model evaluation analyses is from GOZCARDS, a data record that was created using high quality satellite-based Level 2 data as "source" data sets, which were merged together into global monthly zonal mean records for O₃, H₂O, and HCl, going back in time before the (2004) launch of Aura. Readers are referred to the GOZCARDS description and highlights provided by Froidevaux et al. (2015). In brief, for O₃, the original GOZCARDS version 1.01 (v1.01) data record starts in 1979 with solar occultation measurements from the first Stratospheric Aerosol and Gas Experiment (SAGE I), and continues with data from SAGE II, the Halogen Occultation Experiment (HALOE), the Upper Atmosphere Research Satellite (UARS) MLS, the Atmospheric Chemistry Experiment Fourier Transform Spectrometer (ACE-FTS, using solar occultation), and Aura MLS. Basically, the overlap time periods for different data sets are used to calculate offsets between zonal mean time series in 10°-wide latitude bins at each pressure level, and the data sets are adjusted to a reference value (SAGE II mean values, for O₃, or an average of satellite measurements for H₂O and HCl); monthly standard deviations are also provided, along with other diagnostic quantities. GOZCARDS data extensions past 2012 were created simply by adding more recent MLS data, appropriately adjusted to account for zonal mean differences between versions, once the MLS O₃ v2.2 data became unavailable (for 2013 onward); the latest ACE-FTS data version was not included. GOZCARDS O₃ (v1.01) has been used for past O₃ trend assessments and in comparisons to other data records (e.g., WMO, 2014; Nair et al., 2015; Tummon et al., 2015; Harris et al., 2015; Ball et al., 2017, 2018).

For the GOZCARDS ozone data discussed here, unless otherwise noted, we use GOZCARDS v2.20, a recent improvement

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

and update to the original version. The ozone v2.20 data set was provided for an updated assessment of stratospheric ozone by Steinbrecht et al. (2017), as well as for the assessment activities of the Long-term Ozone Trends and Uncertainties in the Stratosphere (LOTUS) project and in preparation for the latest international report on the state of the ozone layer, led by the World Meteorological Organization (WMO). GOZCARDS ozone data updates are also used as part of the yearly "State of the Climate" stratospheric ozone-related summaries, produced for the Bulletin of the American Meteorological Society (BAMS). For GOZCARDS O₃ v2.20, the stratospheric retrieval pressure grid is twice as fine as for v1.01; there are now 12 regularly-spaced levels per decade change in log of pressure. The UARS MLS O₃ data were not included in v2.20, since these retrievals are not readily available on the finer vertical grid (although approximations such as interpolation could be used); also, there is no easy provision of UARS MLS retrieval uncertainties on a finer grid. The most significant change for the new merged ozone is the effect of using the updated and more robust version 7 data from SAGE II (Damadeo et al., 2013). Version 7 uses National Aeronautics and Space Administration (NASA) Global Modeling and Assimilation Office (GMAO) Modern-Era Retrospective Analysis for Research and Applications (MERRA) temperature (T) profile data (Rienecker et al., 2011) in the retrievals, and these values (rather than T from the National Centers for Environmental Prediction (NCEP)) also have a significant impact on the conversion of SAGE II O₃ from its native density/altitude grid to the GOZCARDS mixing ratio/pressure grid. Also, Aura MLS v4.2 O₃ data are now used (instead of MLS v2.2); HALOE v19 O₃ profiles are included, after interpolation to the finer pressure grid before merging. As a result of these improvements in GOZCARDS O3, we have observed closer agreement and larger correlation coefficients between the Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) data record (Davis et al., 2016) and GOZCARDS v2.20 O3 time series than between SWOOSH and GOZCARDS v1.01 (SWOOSH O3 also uses SAGE II v7 ozone data); more details regarding the impact of GOZCARDS v2.20 O₃ on trends are provided in Sect. 5 and in the Appendix.

202122

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

3 WACCM (CESM1) description and simulations

WACCM (CESM1) is a chemistry climate model of the Earth's atmosphere, from the surface to the lower thermosphere (Garcia et al., 2007; Kinnison et al., 2007; Marsh et al., 2013; Garcia et al., 2017). WACCM is a superset of the Community Atmosphere Model, version 4 (CAM4), and includes all of the physical parameterizations of CAM4 (Neale et al., 2013) and a finite volume dynamical core (Lin, 2004) for the tracer advection. The horizontal resolution is 1.9° latitude x 2.5° longitude. The vertical resolution in the lower stratosphere ranges from 1.2 km near the tropopause to ~2 km near the stratopause; in the mesosphere and thermosphere the vertical resolution is ~3km. Simulations used here are based on the guidelines from the International Global Atmospheric Chemistry / Stratosphere-troposphere Processes And their role in Climate (IGAC/SPARC) Chemistry Climate Model Initiative (CCMI) (Morgenstern et al., 2017). Improvements in CESM1 (WACCM) for CCMI include a modification to the orographic gravity wave forcing, which reduced the cold bias in Antarctic polar temperatures (Garcia et al., 2017; Calvo et al., 2017) and updates to the stratospheric heterogeneous chemistry, which improved the representation of polar ozone depletion (Wegner et al., 2013; Solomon et al., 2015). In this work, there are two CCMI scenarios, spanning the 1990-2014 period. The first scenario follows the CCMI REF-C1 definition and three ensemble members were completed; this falls under the "free-running" scenario. We note that all the analyses herein are based on an average of these three simulations. We have checked that the three representations' departures from the average are small enough not to require separate comparisons for each case, when pursuing average or root mean square (RMS) differences versus observations, in comparison to differences using the 2nd model scenario (see below); this is also true for the model/data comparisons of RMS variability. This first model scenario includes forcing from greenhouse gases (CH₄, N₂O₂ and CO₂), organic halogens, volcanic aerosol surface area density

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

and heating, and 11-year solar cycle variability. The sea surface temperatures are based on observations and the quasi-biennial oscillation (QBO) is nudged to observed monthly mean tropical winds over 86-4 hPa, as described in Matthes et al. (2010).

The second scenario is based on the CCMI REF-C1SD scenario and includes all the forcings of REF-C1, except for additional external QBO nudging. This scenario uses the specified dynamics (SD) option in WACCM (Lamarque et al., 2012). Here, temperature, zonal and meridional winds, and surface pressure are used to drive the physical parameterization controlling boundary layer exchanges, advective and convective transport, and the hydrological cycle. The meteorological analyses are taken from MERRA and the nudging approach is described in Kunz et al. (2011). The QBO circulation is inherent in the MERRA meteorological fields and is therefore synchronized with that in the "real" atmosphere. The horizontal resolution is the same as the REF-C1 version and the vertical resolution follows the MERRA reanalysis (from ~1 km resolution near the tropopause to about 2 km near the stratopause). The model meteorological fields are nudged from the surface to 50 km; above 60 km, these fields are fully interactive, with a linear transition in between. Both WACCM versions used here contain an identical representation of tropospheric and stratospheric chemistry (Kinnison et al., 2007; Tilmes et al., 2016). The species included in this mechanism are contained within the Ox, NOx, HOx, ClOx, and BrOx chemical families, along with CH4 and its degradation products. In addition, 20 primary non-methane hydrocarbons and related oxygenated organic compounds are represented, along with their surface emissions. In total there are 183 species and 472 chemical reactions; this includes 17 heterogeneous reactions on multiple aerosol types (i.e., sulfate, nitric acid trihydrate, and water-ice). For this work, the CESM1 (WACCM) REF-C1 and REF-C1SD simulations will generally be referred to as FR-WACCM and SD-WACCM, respectively. While the runs were originally designed to stop at the end of 2010, for this work, the forcing inputs have been extended through 2014.

20 4 Climatological comparisons and biases

We first describe some of the major climatological features for the various stratospheric species mentioned in the Introduction. We focus here on the main differences between average model trace gas abundances in the FR-WACCM and SD-WACCM runs and the corresponding abundances from Aura MLS for 2005 through 2014; this includes a sub-section on annual and semi-annual variations. Further analyses of interannual variations and trends are discussed in Sect. 5.

4.1 Average abundances

We provide climatological latitude/pressure contour plots in the Supplement (Fig. S1 for O₃ and H₂O, and Fig. S2 for HCl, HNO₃, and N₂O), showing Aura MLS and WACCM mixing ratio distributions, averaged over 2005 through 2014. Since such plots do not easily allow one to quantify the largest areas of model/data disagreement, we show in Fig. 1 (left column, top two panels) the percent differences between WACCM and the MLS climatologies; a positive value means that, on average, for 2005-2014, the model values exceed the data values. Also, we show in the right column (top two panels) the absolute value of the average model/data difference divided by systematic error estimates (2σ values) for MLS ozone. These error estimates have been provided in past MLS validation and error characterization work as tabulated "typical" (global average) profiles as a function of pressure; the latest update of such error estimates for version 4 MLS data is provided by the MLS team in Livesey et al. (2018). The vertical profile of estimated systematic errors for MLS ozone is given in the Supplement (Fig. S3). Note that the MLS team can provide further systematic error details for MLS data users (e.g., for pressure levels not listed in the standard Tables). Past validation references for MLS ozone include Jiang et al. (2007), Froidevaux et al. (2008a), and Livesey et al. (2008), as well as the more recent work covering many satellite (and other) instruments by Hubert et al. (2016). The original MLS data validation

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

work for H₂O is from Read et al. (2007) and Lambert et al. (2007), who also described N₂O validation, whereas HNO₃ validation work was discussed by Santee et al. (2007).

The two bottom panels of Fig. 1 show a comparison between the two model runs (with percent differences on the left and the ratio of the absolute differences versus data on the right). The main conclusion from Fig. 1 is that most of the model ozone climatology falls within about 5 to 10% of the data climatology, except in the upper troposphere and lower stratosphere (UTLS), where the SD-WACCM O₃ values are even larger than those from FR-WACCM (see bottom left panel). Our work focuses on the stratosphere, but both FR-WACCM and SD-WACCM average O₃ values at low latitudes are lower than the observed mean values from 215 to 261 hPa (MLS retrieval pressure levels that lie in the upper troposphere at these latitudes). While the right column of Fig. 1 indicates that the difference to error ratio does not show a very significant systematic difference in this region, there are known MLS positive biases versus tropical ozonesonde data, and this could account for at least part of the apparent model low bias, at least for the 215 hPa level; between this level and the tropopause (near 100 hPa), the SD-WACCM model values appear to be biased somewhat high. On the other hand, O3 mid-latitude values from 100 to 215 hPa are biased high in SD-WACCM in particular, with a difference to systematic error ratio larger than 2 to 3 in most of this region; otherwise, Fig. 1 shows that these ratios are typically less than 1 to 1.5. An illustration of the more significant differences is given in Fig. 2, for the O₃ data and model time series at 215 hPa for 50°N-60°N (these abundances represent lower stratospheric values). This shows that both FR-WACCM and SD-WACCM average values are larger than the data in this region, and more so for SD-WACCM. In relation to this model overestimate of ozone, Imai et al. (2013) have shown that the SD-WACCM O₃ values are also larger than those from the Superconducting Submillimeter-Wave Limb-Emission Sounder (SMILES) in the lowest portion of the stratosphere (near 18-20 km). In Fig. 2, we also observe that the model ozone annual amplitude (AO) is larger than the observed amplitude; we discuss the stratospheric AO more generally in the next section. If anything, MLS O3 at mid-latitudes is biased slightly high (by roughly 5%) with respect to a multi-instrument mean ozone field based on a large number of monthly zonal mean satellite data sets from the Stratosphere-Troposphere Processes And their Role in Climate (SPARC) Data Initiative (DI), as discussed by Tegtmeier et al. (2013), who also showed that the MLS O₃ seasonal cycle at mid-latitudes and 200 hPa is in very good agreement with the multi-instrument mean. The limb emission measurements from Aura MLS for the species discussed here provide generally strongly peaked vertical averaging kernels with a resolution of 2.5-4 km (see Livesey et al., 2018, for sample plots of these kernels). We have confirmed that smoothing the model profiles using the MLS averaging kernels (and a priori information) gives very little change (less than a few % for the Fig. 2 example, and even less at higher altitudes) in O₃ abundances and seasonal cycles, and we see no real need to use such a smoothing for the model/data comparisons herein; the significant model/data differences in Figs. 1 and 2 are thus not caused by this sort of issue.

Figure 3 is the H₂O analog of Fig. 1, for pressures reaching up to 0.01 hPa, since the Aura MLS H₂O retrievals cover both the stratosphere and the mesosphere; again, a typical profile of MLS systematic error estimates (Livesey et al., 2018) has been used in deriving the results shown in the top two right panels, which test for the existence of a significant bias between model and observations. We note that MLS H₂O version 3 stratospheric data generally exhibit a slight high bias (of a few to 5%) versus multi-instrument mean values, with a somewhat larger positive bias (of ~10%) in the lower mesosphere (Hegglin et al., 2013). Such biases are within the expected measurement systematic errors; MLS version 4 stratospheric H₂O data show essentially no systematic change in comparison to version 3 (Livesey et al., 2018). FR-WACCM and SD-WACCM H₂O mean values are on the low side (by ~5-15%) relative to MLS H₂O in the upper stratosphere and in most of the mesosphere (see Fig. 3), implying that the models are in good agreement with the SPARC DI multi-instrument mean H₂O. There is independent evidence that MLS H₂O has a dry bias near the hygropause (at the low end of the vertical range shown in Fig. 3, where the bottom level is 150 hPa); this has been known for some time (see Read et al., 2007; Vömel et al., 2007). This is also consistent with the existence of a

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

model high bias relative to MLS near 150 hPa, assuming that the models come close to representing the H_2O climatology in this region. In terms of the significance of the biases, the right top two panels of Fig. 3 indicate that the H_2O model/data comparisons are generally in agreement within the estimated (2σ) systematic errors, and that this level of agreement is slightly better in the case of SD-WACCM.

For HCl, the climatological comparisons of Fig. 4 show that both models exhibit a small (5-10%) low bias versus MLS HCl in much of the stratosphere, with a stronger negative model bias in the tropical region between 100 and 150 hPa. The model/data relative biases in stratospheric HCl are generally within the MLS HCl systematic errors (see Fig. 4, top two panels at right). MLS HCl is slightly on the high side of the multi-instrument mean climatological results provided in the SPARC DI report (SPARC, 2017). The small negative model bias in the upper stratosphere could also arise from the lack of a sufficiently pronounced decrease in upper stratospheric MLS HCl, as a result of the interruption in the main MLS HCl target band (band 13) data after early 2006 (see Livesey et al., 2018). There is also a known strong positive systematic bias in MLS HCl at 150 hPa in the tropics (see Froidevaux et al., 2008b), so model underestimates in this region are not a sign of model weakness. We also note that both models exhibit a systematic difference versus HCl observations in the lower stratosphere (with larger differences for SD-WACCM), as well as a downward sloping pattern (equator to pole) in the southern hemisphere (SH), and smaller mean differences (for SD-WACCM) in the northern hemisphere (NH).

Figure 5 provides average comparisons for N₂O (a good dynamical tracer). While the mean lower stratospheric SH N₂O values are larger for SD-WACCM than for FR-WACCM (bottom left panel of Fig. 5), the mean absolute fit for SD-WACCM versus MLS is not significantly better. The most significant climatological differences with respect to the error bars (top two right panels in Fig. 5) are in the upper stratosphere at low latitudes; in this region, SD-WACCM agrees somewhat better with MLS. However, this is also where the mean abundances decline rapidly with height towards the limits of the MLS sensitivity. Not too surprisingly, this is also where the SPARC DI results for N₂O show the largest scatter in terms of percent differences (often exceeding 10-20%, see SPARC, 2017).

Finally, the climatological comparisons for HNO₃ (Fig. 6) reveal very few areas of mean model/data disagreements significantly outside the systematic uncertainties. However, there is a general model underestimation, especially in the polar upper stratosphere. We will see later that there are large recurring model/data differences in the upper stratosphere during certain months. At high latitudes in the lower portion of the stratosphere, the models tend to overestimate the data. The upper troposphere is where the satellite-based HNO₃ data have been validated the least, but there is some evidence for a high MLS bias in this region, based on SPARC DI results (see SPARC, 2017). While this might explain, at least qualitatively, why the models are observed to underestimate MLS tropical UT HNO₃ (see Fig. 6), more work is needed to better evaluate HNO₃ from models and satellite-derived data sets in this particular region.

It is also interesting to point out modeled and observed seasonal changes in the polar lower stratosphere over Antarctica. Figure 7 depicts average seasonal changes over the 70°S-80°S region at 46 hPa for 2005-2014, using Aura MLS observations and model values for comparison. We wish to emphasize the slope of the early winter decline in HCl, and we see that the model HCl values do not decline as fast as indicated by the data, even though SD-WACCM tracks the interannual variability better than FR-WACCM does (see Fig. S4 for the relevant time series from 2005 through 2014). Many of the options and uncertainties regarding lower stratospheric heterogeneous chemistry modeling for SD-WACCM at high latitudes in the polar winter/spring have been discussed by Solomon et al. (2015), who have pointed, for one specific year (2011), most of the features depicted in Fig. 7. For our broader time period, we see that the HCl rate of decline from May to July (dominated by nighttime conditions) is slower in both the SD-WACCM and FR-WACCM results than the corresponding mean HCl rate of change from MLS (top left panel of Fig. 7). Grooß et al. (2018) have recently discussed this HCl model/data discrepancy for dark polar vortex conditions,

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

including the potential impact of numerical diffusion issues in the Eulerian models, in comparison to their simulations using the Chemical Lagrangian Model of the Stratosphere (CLAMS), which shows even larger HCl discrepancies. These authors discuss some possible mechanisms and uncertainties, and they argue that additional decomposition of condensed-phase HNO₃ might play a role, possibly via galactic cosmic ray impacts. Since this rapid decline in HCl occurs during polar night, these authors point out that this early HCl issue does not lead to much difference in polar ozone loss rates, which only become significant during sunlit conditions (early spring). Figure 7 confirms that, on average, the SD-WACCM O₃ decline and rise match the data well. We also note that FR-WACCM shows smaller-than-observed declines in HNO₃ and H₂O, whereas SD-WACCM matches these observations much better. The temperature panel (bottom center) gives a possible reason for these differences, as T from FR-WACCM is higher by a few degrees during the coldest phase than T from SD-WACCM (MERRA-based), and larger than the MLS-derived values. This would lead to less irreversible denitrification and dehydration. The general nature of the results shown in Fig. 7 is similar at other lower stratospheric pressures (and for latitudes poleward of 80°S), although there is some variability in the magnitude of the differences. Over the Arctic region (not shown here), temperature-related differences are not as systematic or as large as over Antarctica, but similar model/data differences in the early winter rate of decline in HCl exist there also (as mentioned by Grooß et al., 2018).

As an addendum regarding the evaluation of models in comparison to data sets, we provide in Appendix (A1) the results of a model grading approach that has been used in the past (e.g., Douglass et al., 1999, Waugh and Eyring, 2008). We find (see Appendix A1) that this grading method often leads to low grades (see Fig. A1), if applied using systematic uncertainty estimates from the MLS data characterization work (Livesey et al., 2018). The model results, as good as they are in many respects, cannot always match the data closely enough, at least based on such grades (although the grading formulation could also be reconsidered). As mentioned in the Appendix, the multiplicative error factor (see Equation A1) can be increased (e.g., from 2 to 4) to force these grades (see Fig. A2) to span a more useful range (in the plots). Indeed, we observe similarities between Fig. A2 (top two panels) and Fig. 1 (middle panels): poorer SD-WACCM performance for pressures ≥ 100 hPa, better mid-latitude results near 30-40 hPa, and poorer performance again near 3 to 5 hPa. Also, we observe the poorest H₂O grades near 1 hPa in Fig. A2 (bottom panels), which is similar to the poorer performance in the middle panel of Fig. 3, while the best stratospheric H₂O grades are found near 10-20 hPa, which matches the best performance (smallest values) in Fig. 3 (top two panels at right). In the case of merged data records, we note that it is generally more difficult to estimate systematic errors. The GOZCARDS data analyses led to conservative (i.e. possibly somewhat pessimistic) systematic error estimates as a function of latitude and pressure (see Froidevaux et al., 2015) that are significantly larger than the systematic error estimates for MLS data only. There are other methods that could lead to useful error estimates, through the use of multi-satellite data sets and the spread between these (see SPARC, 2017), for some species at least. Moreover, when one considers relative variations such as anomaly time series (as done in a subsequent section), it becomes even less clear how to best assign uncertainties in the context of "errorweighted" grades; some data records may also drift with respect to others, or with respect to ground-based data, so that the actual errors will change with time (and possibly with location as well), in a difficult to determine way. We do not pursue this more traditional grading approach further here, especially as the two models we are comparing often lie fairly close together. For multi-model comparisons (which is outside the scope of this work), one could consider how to best apply grading methods such as the one in Appendix A1, along with other diagnostics such as those discussed here; in the end, the most important aspect of such analyses possibly lies in the relative values of the grades or diagnostics for different models.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

4.2 Annual and semi-annual cycles

Figure 8 displays the amplitudes of annual and semi-annual variations for MLS ozone and the corresponding FR-WACCM and SD-WACCM runs for 2005-2014. We obtained these results from a simple regression fit to the monthly mean time series in each latitude/pressure bin. The primary time dependence of the fitted function is given by additive sine and cosine terms (with 12-month and 6-month periods), in addition to constant and linear trend terms; the AO and SAO amplitudes are given by the square root of the sum of the squares of the corresponding fitted coefficients. We see from Fig. 8 that the overall data and model patterns of AO and SAO variability are quite similar. The ozone AO amplitudes peak (in ppmv) at mid- to upper stratospheric levels, with high latitude variations also observed as a result of the effects of winter/spring polar chemistry and dynamics; the lower stratospheric peak AO amplitudes are more prominent over the southern polar regions, where stronger O₃ depletion occurs on a seasonal basis. These MLS O₃ AO patterns are very similar to those obtained by Schoeberl et al. (2008), using a much shorter time period (Sep. 2004 to Dec. 2006); the same holds for other species (H₂O and HCl) considered in that work and here. The observed SAO amplitude for O₃ exhibits strong peaks in the upper stratosphere, both in the tropics and at high latitudes. The anti-correlation between O₃ and temperature as a result of temperature-dependent photochemical production and loss terms for O₃ has long been known to cause most of the O₃ variability in the upper stratosphere (see Perliski et al., 1989, in relation to the AO and the SAO). The AO and SAO amplitudes obtained in that and other past studies (e.g., see Ray et al., 1994) are very similar to the amplitude patterns shown here. If we look more closely (and based on AO amplitude ratio plots not shown here), there are often O₃ AO amplitudes 20-80% larger than those derived from MLS data for both WACCM runs in the lower stratosphere (from 50 hPa at low latitudes to 215 hPa at high latitudes); such a model overestimate of the AO amplitude was shown in the time series example of Fig. 2. More generally, outside of this region, we observe somewhat closer fits to the MLS AO amplitudes for the SD-WACCM version, but both models track the data and each other well, with AO amplitudes typically within ~25% of the MLS AO amplitudes. For the Antarctic lower stratosphere, the timing and magnitude of the seasonal recovery after the ozone hole plays a role, and in this respect, we have observed that SD-WACCM generally fits the MLS data better than FR-WACCM does. In the tropical upper stratosphere, where the SAO is larger than the AO (see Fig. 8), the SD-WACCM results match the observed SAO amplitudes slightly better than those from FR-WACCM. Despite the existence of a few model/data differences, these AO and SAO amplitude comparisons, coupled with our examination of model/data amplitude ratio plots as well as the time series (which include the phase information), do not elicit major concerns regarding the model characterization of the primary processes expected to govern these modes of O₃ variability. The study of dynamical forcing mechanisms in relation to such modes continues to be an active area of research (e.g., see Ern et al., 2015, for a discussion of wave-driving and the SAO). Also, Smith et al. (2017) have recently shown that analyses of Aura MLS geopotential height data lead to derived tropical zonal mean winds that agree well with those derived from Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) geopotential heights, and with direct wind data, thus enhancing our knowledge of tropical atmospheric dynamics (including the SAO and QBO).

For H₂O, a similar overview of the AO and SAO amplitudes is given in Fig. 9, which covers the vertical range from 100 to 0.01 hPa. A peak in these amplitudes resulting from the seasonal downward transport before the winter, followed by wintertime dehydration, is observed in the lower stratospheric southern polar region; we note that the SD-WACCM results match this feature better than the FR-WACCM simulation does. Other interesting features include the southern hemisphere's upper stratospheric AO peak in the extra-tropical region. This has been seen by many satellite-based measurements, as discussed in the comparisons by Lossow et al. (2017a). Lossow et al. (2017b) have explained this "island" feature in more detail, with the help of model simulations and analyses; they argue that vertical advection tied to the upper branch of the Brewer-Dobson circulation largely explains the seasonal highs (lows), via downwelling (upwelling). They also show that an AO maximum is observed as

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

well in other species in roughly the same region, including in N_2O MIPAS data; we confirm this behavior (see also Fig. S5) from the N_2O AO amplitude feature observed in MLS data, as well as in the WACCM runs (and more so in SD-WACCM). The derived AO and SAO amplitude patterns in H_2O from Lossow et al. (2017a) are consistent with what we show here; this includes the peak values in the upper stratosphere and mesosphere, attributed to the combined effects of photochemistry and vertical transport. For ozone, a dominant feature in the SAO amplitude exists in the tropical upper stratosphere; see Lossow et al. (2017a) for a brief review of past work explaining such dynamically-driven features for H_2O . While there is generally a good level of model/data agreement in the main H_2O AO and SAO patterns, both WACCM comparisons tend to underestimate observed AO and SAO amplitudes in the lower stratosphere and overestimate AO amplitudes in the SH mesosphere, while slightly underestimating the mesospheric SAO amplitudes in both polar regions. The largest amplitude differences reach a factor of two, in places, for the lower stratospheric model underestimates, which cannot be caused by slight model underestimates of average MLS H_2O (as seen in Fig. 3); however, we note that the lower stratosphere is also the region where AO and SAO amplitudes are smallest (typically < 0.1 ppmv).

Turning briefly to the other species discussed here, for N2O, we have already mentioned the existence of the upper stratospheric AO peak (the "island" feature described by Lossow et al., 2017b) in the southern hemispheric extra-tropical region. This is similar to the H₂O AO amplitude maximum feature, but the N₂O seasonal variations are anti-correlated with H₂O, as demonstrated by Lossow et al. (2017b), using MIPAS data (and as is also apparent in the MLS time series, not shown here). Furthermore, we observe in Fig. S5 a somewhat better match in the AO and SAO N₂O amplitude patterns for SD-WACCM than for FR-WACCM versus MLS, in particular for tropical to southern mid-latitudes. We note that this is also manifested in better time series fits for SD-WACCM, besides the closer match in average values; as mentioned in the Introduction, this is what one would generally expect for the two model versions. We saw also in Fig. 5 that FR-WACCM overestimates the average values of upper stratospheric tropical N2O. For HCl and HNO3, the AO and SAO amplitudes are dominated by the variations at high latitudes (see Figs. S6 and S7). The model HCl upper stratospheric AO and SAO amplitudes match up fairly well with the observed amplitudes, despite the aforementioned issues relating to MLS upper stratospheric HCl trends. The NH lower stratospheric polar variations are somewhat underestimated by the models, and more so by FR-WACCM run, which (based on time series plots) exhibits larger values at the low end and smaller values at the high end of the HCl summer to winter cycle. For HNO3, the main AO and SAO model features follow the MLS patterns, although there is a model underestimation of the amplitudes in the upper stratospheric polar regions, because these models do not properly capture the observed recurrences of enhanced HNO₃, as mentioned earlier (see also Sec. 4).

5 Time series comparisons

5.1 Anomaly time series: fits and variability

32 5.1.1 Fits

We wish to evaluate which of the two WACCM models (free-running or specified dynamics) provides a better match, or fit, to the temporal variations in observed deseasonalized anomalies. Again, we would expect SD-WACCM to generally fit these anomalies better than FR-WACCM. We analyze the model and data deseasonalized anomaly time series, obtained by differencing each month's zonal mean value from the long-term averages for the same month. We then calculate a diagnostic of model fit to the data, by using the RMS differences between these deseasonalized model and data series, and normalize by dividing this quantity by the RMS of the data anomalies themselves. Thus, a diagnostic value that is much less than unity means

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

that the match to the time series is much smaller than the typical variability; this also implies a good fit to the observed anomalies. In the Appendix (A2), we provide the mathematical expression for this "RMS difference diagnostic". A better model fit to the observed anomaly series will be represented by a smaller "RMS difference diagnostic" value. We also calculate the standard (Pearson) correlation coefficients, R, between model and data anomalies, and we use R² as another measure of "goodness of fit" for the models. The first diagnostic is unitless and does not depart too much from the 0 to 1 range; R² is limited to the 0 to 1 range, with larger values indicating a higher degree of linear correlation. We also use these two diagnostics together, by calculating the ratio of R² over the RMS difference diagnostic to obtain a "combined diagnostic". This diagnostic could have a large value (and a good model result) from both a large R² value (in the numerator), meaning a high correlation with observed anomalies, and a small RMS difference (in the denominator), implying a good fit to these observations. This also tends to amplify the differences between two model comparisons to the same data series. An ideal model fit would correlate tightly in time to observed oscillations, but also exhibit the right magnitude for these variations by "hugging" the anomaly series without being off in magnitude. Indeed, two model series could have oscillations in phase with data variations and thus the same R² values, but with different amplitudes (and different overall fits); conversely, two model series could have difference fits.

In Fig. 10, we display latitude/pressure contour plots of the above diagnostics for FR-WACCM and SD-WACCM O₃ anomalies in relation to MLS anomalies for 2005-2014. We immediately see from the top two panels that the SD-WACCM RMS difference diagnostic values (in the 0.2 to 1 range in the stratosphere) are smaller than those from FR-WACCM (with typical values between 0.8 and 1.2). Values of R² (middle panels) show that SD-WACCM also correlates very well with the observations from 2005-2014, with values typically between 0.7 and 0.95 in most of the stratosphere, and somewhat poorer correlations in the UTLS. The FR-WACCM ozone series tend to correlate fairly well with the data at low to mid-latitudes for pressure levels between about 70 and 7 hPa, which is also where the FR-WACCM RMS difference diagnostic shows better performance than in other regions, and (as an explanation) where the dynamics are nudged (to tropical winds) in a similar way as for SD-WACCM. However, FR-WACCM shows poor performance (almost zero correlation) at high latitudes and in all of the uppermost stratosphere.

Figure 11 shows sample O₃ series for the upper stratosphere (at 2.2 hPa) for 0°-10°N as well as 40°N-50°N. Although the tropical series show good correlations overall for both models versus data, the details of observed semi-annual peaks and the interplay between the AO, SAO, and the quasi-biennial oscillation (QBO) are better followed by the SD-WACCM curve. The differences in O₃ amplitude and phase are more clearly displayed in the bottom (left) panel, which shows the deseasonalized anomalies. Diagnostic values provided in this panel for both models distinctly show that SD-WACCM performs better than FR-WACCM here, with a much larger R² value and a smaller RMS difference diagnostic value, and hence, a much better (larger) combined diagnostic value. The same comments apply to the right two panels of Fig. 11, which showcase the NH mid-latitudes at 2.2 hPa. In the high latitude lower stratosphere, the poorer FR-WACCM results in Fig. 10 are generally caused by time series that are observed to be less in-phase with the polar winter/spring variations, as well as by more departures in the magnitude of such variations; we will return later to sample polar time series for ozone and other species. The bottom two panels in Fig. 10 amplify the differences between the models, with values of the combined diagnostic below 1 in most regions for FR-WACCM, but values between 1 and 3 for the whole stratosphere in the SD-WACCM case. The more realistic dynamics in SD-WACCM, coupled with the same chemistry as FR-WACCM, allow for better SD-WACCM fits to the data, as shown quantitatively in Figs. 10 and 11. These plots also point to poor results for both models in the upper troposphere, albeit with somewhat better results for SD-WACCM, although this is not the focus of this paper.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

We now turn to Fig. 12 for a description of the same diagnostics as above, but for model/data H₂O comparisons, and a top pressure level at 0.01 hPa. We observe, again, that the diagnostics of fit are usually much better for SD-WACCM, which yields R² values of 0.6 to 0.9 and RMS difference diagnostic values below 1 for most of the stratosphere and lower mesosphere, and therefore better combined diagnostic results than FR-WACCM as well. The SD-WACCM diagnostics themselves worsen in the upper mesosphere and in the high latitude regions near 215 hPa. In the upper mesosphere, the better diagnostic results for SD-WACCM are seen in the time series (not shown here) as a better match versus the MLS H₂O series anomalies in terms of the interannual variability at all latitudes, as well as some seasonal peaks at high latitudes; we interpret this as the result of a better dynamical representation of the mesosphere for SD-WACCM. We note that the high-quality representation of mesospheric composition by SD-WACCM is also demonstrated in comparisons to measurements of CO profiles above Kiruna, Sweden, by MLS and the Kiruna Microwave Radiometer (Ryan et al., 2018). For H₂O near 200 hPa, poor fits at high latitudes occur where MLS is known to have a significant dry bias versus sonde and Atmospheric Infrared Sounder (AIRS) data, as discussed previously in MLS data documentation (Livesey et al., 2018), as well as by Vömel et al. (2007) and Davis et al. (2016). MLS H₂O is low by a factor of several here versus the WACCM runs (which show values of 10-60 ppmv). The data variability may also be affected by the dry bias retrieval issues at the lowest altitudes for these high latitude regions, where observed anomalies are more poorly tracked by the models; a planned future update to the MLS H₂O retrievals might help to mitigate this discrepancy.

Figure 13 displays results similar to Fig. 10 but for stratospheric HCl. SD-WACCM HCl results versus MLS are also generally superior to those from FR-WACCM and show high correlations ($R^2 > 0.7$) in most of the lower stratosphere, with somewhat poorer results in the upper stratosphere, where the RMS difference fits as well as the combined diagnostic are poor for both models. We trace the upper stratospheric issue back to a known data problem in this region, where MLS HCl trends are too flat and the models depart more from the observations (down to about 10 hPa), notably in the RMS difference diagnostic. Poorer correlations are observed for FR-WACCM at high latitudes, which we will return to later for the lower stratosphere, but even fairly subtle differences in the timing (phase) can lead to significantly poorer correlations. The poorer fits at 100 hPa in the deep tropics are related to a large underestimate of the mean data, which may be caused, at least in part, by an MLS high bias (Froidevaux et al., 2008b), but more so, for R^2 , by some out-of-phase variability as well. It will be difficult to resolve this issue until more realistic (lower) MLS HCl values are obtained, and as the phasing may also change with new retrievals.

For the dynamical tracer N₂O, we also observe in Fig. 14 (showing model comparisons to the 68 to 1 hPa observations from the 190 GHz MLS N₂O band for 2005-2014) that SD-WACCM fits the data better than FR-WACCM, in both the R² and the RMS difference categories. FR-WACCM exhibits poor results in the upper stratosphere and at high latitudes in the lower stratosphere. Both models exhibit poorer RMS fits and poorer correlations in the tropical lower stratosphere. Partly, this appears to be caused by a model underestimation of the MLS N₂O variability in this region, with some QBO phasing differences as well.

HNO₃ results (see Fig. 15) show, again, better fits to the stratospheric MLS data from SD-WACCM than from FR-WACCM, and poor performance from FR-WACCM at high latitudes. Both models do poorly in the upper stratosphere, and Fig. 16 illustrates the magnitude of this discrepancy in the region (3.2 hPa and 70°S-80°S) where it reaches its maximum, in terms of mixing ratio values. Since its launch, MLS has been observing very large values of HNO₃ in the upper stratosphere, mostly in the polar regions during winter. The WACCM runs used here do not have the right chemistry in the mesosphere and upper stratosphere to adequately represent such variations; implementation of the many necessary missing chemical reactions has not made its way into most CCMs. The solution is believed to be tied to ion cluster chemistry during energetic particle precipitation (EPP) events, which includes large solar proton events (SPEs) as well as more regular auroral-type activity. The study of upper stratospheric NOx enhancements tied to auroral activity and other EPP events has a long history based on other satellite

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

measurements and modeling (e.g., Kawa et al., 1995; Callis and Lambeth, 1998; Siskind et al., 2000; Orsolini et al., 2005; Randall et al., 2007; Reddmann et al., 2010). Yearly upper stratospheric enhancements in ground-based microwave retrievals of HNO₃ profiles over Antarctica were discussed by de Zafra et al. (1997) and de Zafra and Smyshlaev (2001). Direct high altitude EPP effects enhance NOx, which can propagate downward in polar winter and increase stratospheric NOx and HNO3 via this indirect effect and conversion of N₂O₅ on ion water clusters (Böhringer et al., 1983). Large polar enhancements in upper stratospheric HNO₃ (and other species) were observed by the Michelson Interferometer for Passive Atmospheric Sounding (MIPAS) after significant SPE activity in 2003, as presented in several papers (Orsolini et al., 2005; von Clarmann et al., 2005; Lopez-Puertas et al., 2005; Stiller et al., 2005). More complex modeling using modified chemistry and transport-related effects (e.g., Jackman et al., 2008; Funke et al., 2011; Verronen et al., 2011; Kvissel et al., 2012; Andersson et al., 2016) has produced EPP-induced enhancements in high latitude HNO₃, with related improvements in model/data comparisons into the mesosphere, and in comparisons of other species. Regarding the low latitude upper stratospheric HNO3 comparisons, the poorer model fits (even for SD-WACCM) seem to be caused at least in part by more noisy and variable MLS data, under low HNO3 conditions. Finally, tropical MLS HNO₃ data at 147 and 215 hPa are not fit well by either model, as the data exhibit significant seasonal oscillations between 0.2 and 0.5 ppbv (with larger amplitudes occurring at 147 hPa), whereas model values are smaller than 0.1 ppbv. There have been very few tropical UT validation comparisons for HNO₃ (see Santee et al., 2007), but in situ HNO₃ data from an airborne chemical ionization mass spectrometer have indicated that UT HNO3 tropical mixing ratios are mostly below 0.1-0.2 ppbv (Popp et al., 2007, 2009).

For a more in-depth look at the lower stratosphere over Antarctica, Fig. 17 displays anomaly time series comparisons for O₃ and temperature at 68 hPa and 70°S-80°S, along with the diagnostic quantities that we are using. We note (top panel) the poorer O_3 correlations for FR-WACCM ($R^2 = 0.22$) than for SD-WACCM ($R^2 = 0.89$), as well as the poorer RMS difference values (0.89 for FR-WACCM versus 0.33 for SD-WACCM), with correspondingly poorer results in the FR-WACCM combined diagnostic (0.25) versus SD-WACCM (2.67). Similar differences in the diagnostics are obtained in the bottom panel for temperature (T) anomalies, showing excellent agreement between SD-WACCM and retrieved temperature anomaly time series from MLS, both for the R² and RMS fit diagnostics. One should not expect the free-running model, even if it has certain tropical QBO-related constraints that mimic those from the SD version, to perform as well in terms of predicted high latitude temperatures as the SD-WACCM run, driven by realistic (MERRA) meteorological winds, as well as temperatures, which match up closely to the observed temperatures from MLS. These plots also show that springtime anomalies dominate the variability, with warmer than usual springs (during October in particular), such as 2012 and 2013, leading to more positive ozone anomalies, i.e. less ozone depletion; conversely, years (2006, 2008, 2010, 2011) with colder than usual springtime conditions are correlated with negative ozone anomalies and more depleted conditions. Other factors (besides local mean temperatures) can significantly influence interannual variability and longer-term ozone loss over Antarctica; this includes the strength of the vortex, total chlorine abundances, the phase of the QBO, tropospheric wave driving, the timing of warming events, and the impact of aerosols (e.g., Scaife et al, 2005; Parrondo et al., 2014; Strahan et al., 2015; Langematz et al., 2016; Solomon et al., 2016). We saw in Sect. 4 that there are generally good comparisons between SD-WACCM and MLS variations over the Antarctic region during polar winter/spring, except for the rate of HCl decline during early winter; also, poorer results are obtained by FR-WACCM. We also find (not too surprisingly) that interannual differences in lower stratospheric chemical evolution over Antarctica are not as faithfully reproduced by FR-WACCM as by SD-WACCM, although we do not show more related details here.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

5.1.2 Variability

Given our expectations that SD-WACCM would match up better than FR-WACCM to the observed time series of multiple species, and having demonstrated this in the previous section, we turn to what should be a more fair comparison between the two sets of model results, namely the variability aspect. We calculate the ratio of model to data interannual variability, as obtained from the root mean square values of deseasonalized monthly anomaly time series, expressed as a percent of climatological (full period) means; a simple linear trend is first subtracted from the time series, so that the variability comparisons remove any significant trend differences. We do this for the MLS data considered previously (starting in 2005), but also for longer-term time series, using the GOZCARDS data records. The models are sampled monthly following the monthly sampling of the data sets (but not at the daily sampling level of detail); sampling plays a role for the longer-term (merged) GOZCARDS data, which are comprised of some unevenly-sampled occultation data records (depending on latitude and pressure). Figure 18 compares the ozone variability ratios for models versus data using as a reference the MLS 2005-2014 data (top two panels), and the GOZCARDS merged ozone (1992-2003) data (bottom two panels). To first order, we observe similar patterns for both time periods. The SD-WACCM variability is generally within 10-20% of the data variability (ratio values between 0.8 and 1.2). The FR-WACCM variability is generally somewhat smaller than the data variability in the polar regions and in the upper stratosphere. In a recent study, Bandoro et al. (2017) also found that the free-running version of WACCM displays somewhat smaller ozone variability in the upper stratosphere, both for shorter-term and longer-term variabilities, than the observed variability, based on the merged SWOOSH O₃ data record. In the lower stratosphere at low to mid-latitudes, we observe that FR-WACCM exhibits slightly larger variability than the data, whereas SD-WACCM shows slightly smaller variability than the data; Bandoro et al. (2017) found that FR-WACCM slightly overestimates the decadal variability in this region. If a free-running model exhibits significant differences versus observed variability, this has some implications regarding predictions of trend detection feasability, as free-running models are used for such predictions; indeed, trend error bars increase if the variability increases. We also see in Fig. 18 that at high latitudes, FR-WACCM tends to underestimate the actual variability, which means that interannual swings in lower stratospheric ozone, in particular, are more muted in the model, whereas this is less of an issue for SD-WACCM, with its more realistic representation of the dynamics; as an example, refer to Fig. 16, for model and data anomalies at 68 hPa and 70°S-80°S.

A similar overview of model/data variability ratios is provided for H_2O in Fig. 19, which covers both the mesosphere and the stratosphere. In this case, while the variability from SD-WACCM is somewhat closer than that from FR-WACCM to the data variability during both time periods, the tendency for both models is to underestimate the observed variability, with FR-WACCM exhibiting a stronger underestimate in the upper stratosphere and mesosphere. A variability underestimate for FR-WACCM implies that any trend detection in the future will require more years of data in the real atmosphere, if H_2O continues to have larger variability than model expectations. Also, this will translate into smaller estimated uncertainties in the model-derived trends in comparison to the observations (as we will see in the next section on trends). The FR-WACCM underestimate of the variability is sometimes by as much as a factor of two, although it is more typically by ~30% (see Fig. 19). For a time series with RMS variability about the fit represented by σ_t , the number of years needed to statistically detect a trend is proportional to $\sigma_t^{2/3}$ (Weatherhead et al., 1998), and thus, an increase of σ_t by factors of 1.3, 1.5, and 2.0, for example, will lead to an increase in the number of years for trend detection by factors close to 1.2, 1.3, and 1.6, respectively. In the tropical lower stratospheric case, H_2O and temperature values and anomalies for 1992-2014 are shown for 100 hPa and $10^{\circ}S$ - $20^{\circ}S$ in Fig. 20. Again, we note the smaller-than-observed variability in the model H_2O oscillations, with SD-WACCM tracking the data better. This correlates with the temperature series, where smaller variability is seen in FR-WACCM, in comparison to SD-WACCM (which follows the MERRA temperatures); we also note that FR-WACCM temperatures are somewhat larger (by $\sim 1K$ on average) than SD-

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

WACCM temperatures in this region. It is well known that stratospheric entry level H₂O is governed by temperatures near the tropopause "cold trap"; the monthly average variations shown here are similar to what has been shown in past H₂O work (e.g., Randel et al., 2004, 2006; Randel and Jensen, 2013). Brinkop et al. (2016) used model runs from both free-running and nudged simulations to analyze the impacts of different constraints, including sea surface temperatures (SST) and meteorological fields, on "sudden" drops in water vapor; they found that several of these factors play a role in the H₂O variations, including the timing of ENSO and SST variability, the phasing with the QBO, cold point temperatures, as well as the correct dynamical model state. Many other analyses of the relation between entry level H₂O, tropopause temperatures, transport, and convection have been carried out previously (e.g., Holton and Gettelman, 2001; Jensen and Pfister, 2004; Fueglistaler and Haynes, 2005; Rosenlof and Reid, 2008; Read et al., 2008; Schoeberl et al., 2013). Our point here is that the WACCM H₂O anomaly series underestimate the observed variability. We note that this model underestimate exists if we calculate relative variability using a maximum minus minimum range from yearly average anomalies rather than monthly averages; the resulting variability ratio patterns (not shown) are similar, overall, to the contour plots of Fig. 19. We provide a global view of lower stratospheric variability differences (models versus data) in the anomaly time series comparisons at 83 hPa for all latitude bins in Fig. S8. This also shows that the observed interannual changes in H₂O are clearly better followed by the SD-WACCM time series than by FR-WACCM, including the drop in H₂O after 2011 (see Urban et al., 2014). While lower stratospheric H₂O variability is underestimated by SD-WACCM by ~20%, the actual correlation between SD-WACCM and the observed anomalies is very good (as was shown in

For HCl, we show the (detrended) variability ratios in Fig. 21. The observed HCl variability is fairly well matched (within ~20%) by both models in the MLS time period, with an edge given to SD-WACCM. The observed variability is often underestimated (by ~30%) by both FR-WACCM and SD-WACCM in the earlier period (1992-2003). We believe that the HALOE sampling plays a role in this, i.e. even if we limit the model comparison (as we do here) to just the same months as when HALOE observations occurred, incomplete sampling in latitude and time can lead to differences versus a fully sampled model (see Toohey et al., 2013), and more so in the polar regions where the HCl variability is large. In the upper stratosphere, the variability ratios are comparable to or somewhat smaller than those in the middle stratosphere, and there is a 20-30% underestimate of the observed variability, which is based on HALOE HCl observations for the 1992-2003 period. For 2005-2014, SD-WACCM actually matches the upper stratospheric MLS variability fairly well, although these variability values are small. There have been difficulties in fully understanding (or modeling) observed upper stratospheric HCl variations before the declining phase that started after about 2000 (Waugh et al., 2001); see also Sect. 5.

To complete this discussion of variability, we show the ratios of model to data variability for stratospheric HNO₃ (2005-2014) and N₂O (2005-2012) in Fig. 22. We already discussed the issues with missing model chemistry for upper stratospheric HNO₃ variability, as well as the low signal-to-noise issue for HNO₃ data at low latitudes in this region (see bottom two panels, showing low variability ratios there). There is reasonably good agreement in the HNO₃ variability between SD-WACCM and MLS for the lower to mid-stratosphere, while FR-WACCM generally overestimates the HNO₃ variability in this region. Fig. 22 shows N₂O results extending down to 100 hPa. Here, the MLS N₂O-640 data (from the 640 GHz radiometer) for 2005-2012 are used; these retrievals were curtailed in the first half of 2013 as a result of degradation in the 640 GHz radiometer signal chain. Based on results shown in SPARC (2017), there appears to be good agreement in the tropical interannual variability comparisons for N₂O at 100 hPa between MLS and other satellite-derived results. The lower stratospheric N₂O time series behave more smoothly at low latitudes in the models than in the observations. The interannual variability in the MLS N₂O measurements there is somewhat smaller than the standard deviations in monthly mean N₂O values (of order 20-30 ppbv). The MLS N₂O measurement noise itself for a monthly zonal mean (made up of about 5000-6000 profiles) should be less than 1 ppbv. Smoothing the model in

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

- 1 the vertical domain to better match the MLS vertical resolution would not lead to a better fit to the observed variability.
- 2 However, we should keep in mind that the MLS-derived N₂O variability is a small percentage (< 3%) of the monthly zonal mean
- 3 N₂O abundances. In summary, SD-WACCM shows some underestimate of the observed lower stratospheric tropical variability
- 4 for all the species considered here, except for HNO₃; FR-WACCM does so also for 3 species (H₂O, HCl, and N₂O). It may be
- 5 that some of the larger variability in the measurements arises from effects not tied just to MLS radiance noise issues, or from
- 6 variability caused by the proximity to the tropopause for measurements with finite vertical resolution; WACCM could also be
- 7 genuinely underestimating the actual atmospheric variability near the tropopause (for unknown reasons).

5.2 Trends

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

In this section, we discuss how the WACCM runs compare to stratospheric observations when it comes

to trends, from fairly short-term trends (from the Aura MLS time period) to longer-term trends based on comparisons with O₃, H₂O, and HCl GOZCARDS data records (see Sect. 2 and Froidevaux et al., 2015). Trend analyses have their own complexities in terms of analysis methods and uncertainty estimates. For example, O₃ trend assessments have had to deal with trend estimates from different long-term data records, each with its own characteristics (Tummon et al., 2015; WMO, 2014; Harris et al., 2015; Steinbrecht et al., 2017; Ball et al., 2017, 2018). This kind of analysis is especially difficult when investigating trends from time series with high variability compared to the size of the change over time, which is an issue for the lower stratosphere in particular. Global modeling efforts have also led to improved characterizations of the expected long-term impact of different forcings, including the combined and separate impacts on ozone profiles of changes in halogen source gases and greenhouse gases (WMO, 2014).

Here, we focus mostly on whether we obtain significant differences between trend results from WACCM and from observations, given the application of the same analysis methods for the three sets of time series, for ozone and for other species. We have applied multiple (or multivariate) linear regression (MLR) to the time series of deseasonalized anomalies from the data, FR-WACCM, and SD-WACCM. In the Appendix (A3), we provide more details regarding the regression model, which includes commonly used additive functional terms, namely a linear trend and a constant term, cosine and sine functions with annual and semi-annual periodicities, as well as functions describing well known variations arising from the QBO and the El Nino southern oscillation (ENSO); the same functions are applied to fit the model anomaly time series as well. Examples of observational time series from merged ozone observations for 1998 through 2014 are provided in Fig. A3, along with the fits to the series and the linear components (trends). Given the use of fairly short-term time series here (e.g., Aura MLS data alone), we have not included a solar cycle component in the fits, as it can be highly correlated with a linear trend, and more than one 11-vr cycle would be useful to better enable a separation of this signal. We also discuss our methodology for trend error evaluations in the Appendix (A3). We use a block bootstrap method, like the approach of Bourassa et al. (2014) for their trend analyses of ozone from the OSIRIS retrievals. We use random resampling of the residuals in yearly blocks (with 20,000 samples) in this Monte Carlo approach to estimating errors, and we display the trend error bars as 2σ values (which is very close to the 95% bounds on the distribution of linear trend results). Such calculations often lead to significantly larger error bars than more standard methods, which neglect the autocorrelation of residuals. Again, we use the same regression model fits to extract trends from both WACCM and observed time series; error bar calculations are also applied the same way to all the time series.

For ozone, we give an overview in Fig. 23 of deseasonalized anomaly time series (expressed as a percent of long-term means) for 3 latitude bins (northern mid-latitudes, tropics, and southern mid-latitudes) and 2 pressure levels (3.2 hPa for upper stratosphere, 68 hPa for lower stratosphere). The series were first deseasonalized in 10° latitude bins and then averaged. The GOZCARDS data record used here (version 2.20) is an update to the original (version 1.01) record (Froidevaux et al., 2015), as

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

mentioned in Sect. 2. Fig. 23 shows generally good agreement between the various time series, although if one looks carefully, SD-WACCM is generally closer to the observational time series than FR-WACCM is, as one might expect from previous considerations of goodness of fit and variability; also, percent variability is larger in the lower stratosphere than in the upper stratosphere (note the y-axis range difference for these regions), thus rendering trend detection more difficult at lower altitudes. We compare in Fig. 24 the ozone profile trend results from MLS data alone, from the period 2005 through 2014, to those from FR-WACCM and SD-WACCM, for the 3 aforementioned latitude bins. We show the error bars as 2σ estimates, as we find this to be an easy way to visualize if there are really significant differences between models and data, or indeed, between the models. Figure 24 shows that there is a robust indication from the MLS data that the upper stratospheric ozone values have been on the upswing in the past decade, at a rate of about 0.2 to 0.4%/yr, depending on latitude region, with 2σ uncertainties of \sim 0.2%/yr. While the 2 σ error bars (obtained using the bootstrap method mentioned earlier) are fairly large, there are several independent latitude regions and pressure levels with similar results, and thus, this positive trend is a robust near-global upper stratospheric result. These results are broadly consistent with O₃ trends obtained by Steinbrecht et al. (2017), who use MLS as part of the longer-term merged data records, although they studied a longer time period (2000-2016). All things being equal, the errors in these trends should diminish as more years of data are added to the MLS O₃ record, which, for the middle and upper stratosphere, has been characterized as "very stable", namely within 0.1 to 0.2%/yr versus sonde and lidar network ozone data (Hubert et al., 2016); it currently seems difficult to quantify "absolute stability" to much better than this, especially in the lower stratosphere. In the lower stratosphere, trend results tend to be closer to zero, with larger variability and error bars (in \%/yr), and unambiguous detection of post-1997 ozone trends in this region remains elusive (WMO, 2014; Harris et al., 2015). The 2005-2014 trends in Fig. 24 show good broad agreement between model and data, with a tendency for SD-WACCM to agree better than FR-WACCM with MLS, albeit not significantly so, given the size of the error bars, especially in the lower stratosphere; the lower stratospheric tropical results from FR-WACCM are negative, in contrast to both the observational result as well as SD-WACCM, but with large overlapping error bars (given the variability and fairly short time period). In the tropical upper stratosphere, both models exhibit a somewhat more positive trend than observed for this period, although, again, these trend differences are not statistically significant. Nevertheless, as a function of latitude (in 10°-wide bins) and pressure, the 2005-2014 SD-WACCM O₃ trends do follow the MLS trend results quite well; this is shown in Fig. 25 for central latitudes from 55°S to 55°N.

For a consideration of longer time periods, we use the merged O₃ data record from GOZCARDS (version 2.20) to display NH mid-latitude and tropical trends from the models and data for 3 different periods in Fig. 26. The top panels for 1985-1997 focus on the main "declining phase", while the middle panels (1998-2014) show results for the (expected) "early recovery" stage; the 2005-2014 (bottom panels) results are essentially the same trends as those from Aura MLS (Fig. 24) for that period. The largest differences between the two GOZCARDS data versions occur in the tropical upper stratosphere for the declining ozone phase; Fig. S9 displays the tropical trend differences that we obtain for the same three periods as in Fig. 24. In agreement with this are the trend differences provided by Ball et al. (2017), who showed results for the original (version 1.01) GOZCARDS data and for SWOOSH. GOZCARDS version 2.20 data are now in better agreement with the merged SWOOSH O₃ product (as both use SAGE II version 7 data); also, Steinbrecht et al. (2017) showed that the two merged records lead to similar (post-2000) trend results. As mentioned in Sect. 2, the improvements in GOZCARDS version 2.20 ozone are a result of the incorporation of the SAGE II v7 retrievals (Damadeo et al., 2013), and the use of the MERRA temperatures (used in v7) for the conversion from density/altitude to the GOZCARDS mixing ratio/pressure grid. We note, however, that the lower stratospheric region exhibits interannual variability that is several times larger than that in the upper stratosphere, as seen in Fig. A3 for tropical 1998-2014 data versus SD-WACCM anomaly time series. Even fairly subtle differences in time series over a few years can lead to a sign change in the trends, although there is no statistical significance in the resulting trend differences (see Fig. A3 and Fig. 26,

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

middle right panel at 68 hPa, for the data and SD-WACCM trend results).

To put in perspective what a statistically significant trend difference looks like, we show in Fig. S10 the O₃ anomaly time series for 1998-2014 at 1 hPa for 30°N-60°N, where the SD-WACCM and GOZCARDS trend results lie outside their respective 2σ uncertainties (based on Fig. 26, middle left panel); in this case, the FR-WACCM results happen to be in better agreement with the data. One aspect that could impact model/data differences is that the models are not sampled, here, following the sparser (occultation) viewing, neither in latitude nor in time (time within each month and local time also, since model values represent 24-hr averages). Much denser spatial and temporal sampling is obtained during the MLS observation period, with very regular sampling; while small systematic differences may affect comparisons between average model and MLS abundances, such differences should be very consistent from year to year, thus minimizing the impact on derived trend differences. Also, some of the differences in the upper stratosphere might arise because the averaging of sunset and sunrise occultation data is not as robust for 1998-2004 as for pre-1998, when SAGE II was operating more continuously in both sunset and sunrise modes (and O3 varies more strongly with local time at 1 hPa than at lower altitudes). Also, HALOE had decreasing spatio-temporal coverage in the later years, but these upper stratospheric trend differences would require further investigation. For the 30°S-60°S region (not shown here), we observe similar results (within error bars) as in Fig. 26 for 30°N-60°N; this includes small negative trends in the lower stratosphere for all 3 time periods, although with no statistical significance (i.e., consistent with a zero or slightly positive trend). We also see the same sort of vertical shift in the SD-WACCM profile trends for 1985-1997, as compared to the observed trend profile, which reaches its most negative value at a slightly higher altitude (lower pressure), but the reason for this shift is unknown; theoretically, this could be tied to model/data differences in the ClO peak, and its evolution. Our ozone trend results are largely consistent with other previous work (references mentioned above), which (for records including MLS) typically used merged O₃ from GOZCARDS or from SWOOSH (Davis et al., 2016). We find statistically significant trends (meaning that, assuming Gaussian statistics, a zero trend is not included in the 2 σ error bar range) mostly in the upper stratosphere, both pre-1997 and after 1998. While we observe some small O₃ decreases in the lower stratosphere post-1998, as obtained recently also by the novel analyses of Ball et al. (2018), our study finds little statistical significance there, and a fair level of sensitivity to the starting year or to the data sets used, with a swing to more positive (but marginally significant) results, if the starting year is 2005 and one just uses MLS data. Past work (e.g., Harris et al., 2015) has also shown sensitivity to the series starting and end points; different regression analysis methods can also lead to some non-negligible differences, as shown for example by Nair et al. (2013) and Kuttippurath et al. (2015). We also note that past analyses of lower stratospheric tropical O₃ data have shown positive tendencies, based not just on satellite data as indicated here (with marginal significance) from MLS data alone, but also based on earlier SCIAMACHY data (Gebhardt et al., 2014); in this reference, a positive trend was also obtained from averaged tropical ozonesonde data. This will continue to require further study, towards a longer-term result.

For H₂O, there have been somewhat conflicting past results on stratospheric trends, depending on whether one investigates sonde or satellite data (e.g., Oltmans et al., 2000; Scherer et al., 2008), and regarding mechanisms that could account for more than a few tenths of a %/yr increase in H₂O, as CH₄ increases do not appear to be large enough for this. Beyond the potential impact of CH₄ trends on upper stratospheric H₂O, changes in cold point temperatures or in the circulation need to be invoked in order to account for significant decadal-scale trends in H₂O (e.g., Randel et al., 2000; Rohs et al., 2006; Tian and Chipperfield, 2006; Hegglin et al., 2014). Based on our analyses for 2005-2014 (MLS data versus models), we find in Fig. 27 that this recent decade shows a positive H₂O trend both in the data and in the SD-WACCM result, which tracks the observations (versus latitude as well as pressure) better than FR-WACCM does, as already seen in terms of quality of fits and variability. FR-WACCM exhibits systematically smaller H₂O trend values than both MLS and SD-WACCM at all pressures except near 100 hPa, although the FR-WACCM and SD-WACCM trend error bars (2σ) overlap. This overlap for FR-WACCM and MLS is more marginal in

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

the lower mesosphere, where the impact on H₂O from CH₄ decomposition should be at its maximum, and cold point temperature variability issues are smaller than near the tropical tropopause. Also, the FR-WACCM trends have smaller error bars, given the lower variability typically found in this model. With such lower variability, detection of a given trend would take less time than with the observed variability; however, if the trend is larger (as shown by SD-WACCM or MLS), it also becomes easier to detect. An analysis of H₂O HALOE profiles and ground-based microwave profiles over Hawaii (Nedoluha et al., 2009) showed that changes in upper stratospheric and mesospheric H₂O are sensitive to the solar cycle (see also the mesospheric GOZCARDS H₂O time series in Froidevaux et al., 2015), but show only negligible overall trends between 1992 and 2008.

We should also note some drifts have been detected between coincident MLS and sonde H₂O data, mostly since about 2010, implying that MLS-derived trends are more positive than those from frost point profiles at several sites (Hurst et al., 2016). This relative drift (of as much as 0.5-1.6%/yr for 2010-2015, depending on altitude and location) could therefore play a role in the (small, in comparison) discrepancy between model (SD-WACCM) and MLS trends. The SD-WACCM results agree quite well with MLS in Fig. 27, but they would become larger than MLS (adjusted) results if one were to subtract more than 0.1-0.2%/yr from these MLS trends. Possible causes of observed drifts between MLS and sonde H₂O data are still being investigated, with only a small part of this discrepancy currently attributable to a known instrumental degradation issue for MLS H₂O, which probably also impact other MLS data from the 190 GHz spectral region (N₂O in particular). We note from Fig. 27 that H₂O trend values from both models and MLS data agree better at 100 hPa. Also, we see that H₂O in the tropical region at 80 to 100 hPa (near the stratospheric water vapor entry level) does not display much of a trend. Other recent studies of entry-level H₂O using large-scale satellite data and longer-term analyses (starting in the mid-1980s) have concluded that no significant long-term trend is discernible (Hegglin et al., 2014; Dessler et al., 2014). The former study led to slightly negative lower stratospheric H₂O trends (although with no statistical significance).

For the 1992-2014 period and using GOZCARDS H2O data (not shown here), we also find negative, although not statistically significant, trends in the lower stratosphere, with small (< 0.2%/yr) positive trends in the upper stratosphere and lower mesosphere; there is close agreement between the FR-WACCM and SD-WACCM trends (typically within 0.1%/yr) for that period. This GOZCARDS record, however, does not include SAGE II data back to the late 1980s, as was the case for the analysis by Hegglin et al. (2014), who also obtained positive longer-term (1980-2010) trends in the upper stratosphere from satellite-derived H₂O anomaly records, merged using a global CCM as a transfer function. As found by others, especially when dealing with relatively large decadal-type variability (including the QBO), the choice of start and end points, as well as the length of period studied, can significantly influence the trend values, whether it be for H₂O or for O₃. Long-term lower stratospheric H₂O trend detection is rendered difficult by such variability, including significant short-term water vapor changes (Randel et al., 2006; Hurst et al., 2011; Fueglistaler, 2012; Urban et al., 2014), as noted here also (for the relatively short time series of Fig. S8). For HCl, the changes in stratospheric abundances have been non-linear, with a rapid rise prior to 1998, and a slower rate of decrease after 2004, as expected from the time-shifted abundances of total chlorine at the surface (Froidevaux et al., 2015). Focusing first on 2005-2014, we show the corresponding model and data HCl trend results for the lower stratosphere in Fig. 28. The agreement between the SD-WACCM and MLS trends is quite good, especially for the 30°S-60°S bin, although the error bars are fairly large. However, the (negative) HCl trend results from both models practically always lie below the observed trends for the three latitude bins shown in Fig. 28. The upper portion of this model/data bias follows what we observe as well in the upper stratosphere (not shown), where MLS-derived HCl trends are clearly too flat (shallow) compared to expectations (from model and surface-derived chlorine trends), whereas the upper stratospheric (negative) trends from the original MLS HCl product were more negative (see Froidevaux et al., 2006; Livesey at al., 2018). As a reminder, the MLS team recommendation is

for data users not to include upper stratospheric MLS HCl data (post-2006) in any trend studies. For the lower stratosphere,

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

where the HCl line is broader, there is less concern about the inability to track the HCl trend; also, the near-zero drifts (i.e., drifts < 0.1\%/yr) obtained between two separate MLS ozone band retrievals (not shown here), one from the same radiometer as HCl, and one from the main (very stable) standard MLS ozone product (see Hubert et al., 2016), provide some confidence regarding the stability of lower stratospheric HCl trends. At low latitudes, MLS HCl shows a positive trend (largest and statistically significant at 68 hPa, per Fig. 28). The vertical gradient structure in the observed HCl trends is duplicated to some extent by the SD-WACCM results, although the model trends are always less than those derived from MLS. Latitude/pressure trend variability, including positive tendencies, could be related to circulation changes, as implied by analyses of short-term increases in lower stratospheric HCl seen in both ground-based and GOZCARDS data (Mahieu et al., 2014). Given the rapid rise in chlorine prior to 1998 and the non-linear changes near the peak period, we show in Fig. 29 some of the lower stratospheric time series (for 3 latitude bins and 3 pressures) from GOZCARDS merged HCl (Froidevaux et al., 2015) and the WACCM runs for 1992-2014. There is fairly good agreement in the non-linear behavior observed in both data and model lower stratospheric series. The scatter in HCl data decreases after 2005, and the earlier time series suffer from more inhomogeneous sampling, which may at least in part explain the larger scatter and model/data differences (there is no attempt here to sample the models within each month like the data, and this would be difficult for a merged data set). There are also regions and periods of slow increases in HCl in both data and models (Fig. 29), as well as hemispheric differences in the short-term tendencies, as discussed before by Mahieu et al. (2014) and Froidevaux et al. (2015). The HCl time series are tracked fairly well by SD-WACCM, which generally matches the data better than FR-WACCM; this is consistent with the understanding that dynamically-driven variations are better captured by the incorporation in SD-WACCM of realistic meteorological fields (MERRA). Stolarski et al. (2018) have recently investigated the removal of dynamical variability from MLS lower stratospheric HCl time series by using MLS N2O measurements as a fitting parameter in the regression analysis; this led to retrieved HCl trends that generally match expectations based on the rates of decrease in surface total chlorine. The search for detailed explanations of such short-term increases and variability in lower stratospheric HCl (and other changes in composition) continues to be an interesting area of investigation.

In the upper stratosphere, it has been difficult to explain the details of the observed HCl variations between 1998 and 2002, including the dip between these years (Waugh et al., 2001). We show in Fig. S11 the near-global (60°S-60°N) HCl time series from GOZCARDS at 1 hPa. This helps to underscore that there is a systematic model underestimate of HCl in the uppermost stratosphere; the model/data difference is much smaller if one moves to a pressure close to 5 hPa. While the data uncertainties (of ~0.2 ppby, based on Froidevaux et al., 2015) encompass the model values, the model total should actually be increased by the chlorine contribution from very short-lived substances (VSLSs) to the stratosphere; although this contribution is believed to be less than 0.1 ppbv (Carpenter et al., 2014), recent evidence suggests that there could be a somewhat larger stratospheric chlorine contribution from VSLSs (Oram et al., 2017). Nevertheless, the historical maximum for total tropospheric chlorine abundance was about 3.65 ppbv (WMO, 2014), and this should be the maximum total chlorine expected in the uppermost stratosphere. Upper stratospheric HCl should see a somewhat broader peak than at the surface, with a smaller and time-delayed maximum, depending on transport-related effects (and age of air spectrum, e.g., see WMO, 2010). While WACCM includes the proper abundance and evolution of chlorine source gases at the surface, maximum WACCM HCl in the upper stratosphere (and lower mesosphere) is just under 3.4 ppbv. It is also interesting that the gap between the models (both versions) and the data worsens from 1992 to 2000, with the HCl peak occurring later in the data (with a broader peak than in the models). After about 2002, the decrease in near-global HCl roughly follows the model decrease; additional years of HCl data from ACE-FTS should help refine this comparison.

For N₂O and HNO₃, lower stratospheric model trends are compared to the corresponding MLS data trends in Fig. 30. We note that the MLS standard product right after launch was N₂O-640 (retrieved from the 640 GHz radiometer band data), but it was

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

discontinued after mid-2013, as mentioned earlier, as a result of a rapid hardware degradation issue affecting that band (N2O only). The current MLS standard product, N2O-190, is retrieved from the 190 GHz band. Figure S12 provides evidence of negative drifts in lower stratospheric N2O-190, apparently accelerating in the last few years, since the SD-WACCM and actual N2O values would be expected to continue to rise slowly after the end date on this plot, notably in the tropical lower stratosphere, where N₂O should follow tropospheric trends. Indeed, tropospheric N₂O has been increasing at a fairly steady rate of ~0.26%/yr (WMO, 2014), consistent with the underlying model N₂O and MLS N2O-640 lower stratospheric increases at low latitudes (see Fig. S12 and especially the tropical trends obtained in Fig. 30 at 100 hPa). The FR-WACCM N₂O trends show slightly poorer agreement than SD-WACCM versus N2O-640, although this is not statistically significant. The tropical lower stratospheric MLS N2O-190 trend results (not shown here) are negative (albeit with error bars that encompass small positive trends), but show some differences versus expectations and the N2O-640 results. As for HCl, interhemispheric differences in lower stratospheric N2O trends are interesting in terms of their implications for effects relating to transport (age of air) and changes in the circulation. At lower pressure values, the N2O trends do not mirror the tropospheric N2O trends (in %/yr), and other factors play a role (age of air and changes in circulation, as well as N2O photodissociation). The asymmetric trend pattern between hemispheres, even if it is not a long-term trend, may well point primarily to short-term effects tied to asymmetries in the age of air, and therefore, in the circulation. The asymmetry in age of air results obtained by analyses of (2002-2012) MIPAS SF₆ data (Haenel et al., 2015) could also be related to asymmetries in the N₂O tendencies. They found relatively older air in the northern extra-tropics and younger air in the southern extra-tropics. This could also imply opposite trends for N₂O in the southern and northern lower stratosphere. However, Bönisch et al. (2011) have pointed out that different tracers, like O₃ and N₂O, can be impacted in different ways by both vertical and quasi-horizontal transport effects, depending on their relative gradients in both vertical and meridional domains. Moreover, their work indicates that detailed attribution of tracer variations to structural changes in the Brewer-Dobson circulation is a complex matter, and short-term and longer-term changes may well have different characteristics. Our work here mainly identifies some similarities between some of the trend patterns versus pressure and latitude from SD-WACCM, in particular, and the observed trends, for certain time periods. For the HNO₃ trends (Fig. 30), we also see good agreement between models and data for 2005-2014; latitudinal tendencies and interhemispheric differences therein are similar for model and data. The spatial gradients of these species are different in the lower stratosphere (HCl and HNO₃ increase with height, in contrast to N₂O), and we see that the decreasing HCl trends for 2005-2014 at 30°S-60°S (Fig. 28), in particular, are qualitatively similar to those from HNO₃ in this region. For lower stratospheric HNO₃, there is an underlying trend part caused by the slow increases in N2O, as we can observe in longer-term (1980 to present) model time series (not shown here). N2O and H2O (source gases for HNO₃) are significantly affected by the QBO and there is a strong related variability in lower stratospheric HNO₃. Furthermore, substantial increases in stratospheric aerosols after large volcanic eruptions have influenced lower stratospheric HNO3 via heterogeneous hydrolysis of N₂O₅ (Arnold et al., 1990; Rinsland et al., 1994), and this will impact HNO₃ trends that include volcanically-perturbed periods. We saw that seasonal enhancements in NOx coming down from the mesosphere can also affect HNO3 at high latitudes. Some observed short-term trend patterns in HCl, HNO3, and N2O are better captured by the SD-WACCM model overall than by FR-WACCM, as we show in Fig. 31 for the 2005-2010 period, relevant to the results from Mahieu et al. (2014), who emphasized short-term HCl increases during this time. We note the correlation in these short-term trend results for HNO₃ and HCl, but an anti-correlation for N₂O versus HCl (and HNO₃).

Finally, to re-emphasize how difficult it can be to detect small underlying trends in the lower stratosphere, in particular, Fig. 32 shows deseasonalized model anomalies from SD-WACCM for the 25-year period between 1990 and the end of 2014, for HNO₃, as well as O₃, H₂O, and HCl; on this scale, N₂O variability in this region is much smaller (not shown). As noted previously, and from past work on this topic, fairly sharp drops in water vapor in this region occurred shortly after 2000 and

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

2011, but we also note the significant decadal-type variability in this region, besides the expected links to QBO- and ENSO-type variations. There are also non-negligible radiative implications surrounding such variations for H₂O (Solomon et al., 2010; Gilford et al., 2016; Wang et al., 2016); however, a slow underlying long-term evolution would take time to detect, given the variability. Moreover, the percent variability is even larger for other species, which correlate well with H₂O in this region; indeed, the correlation coefficients between these various time series are all between 0.64 and 0.86, although this multi-species agreement is poorer at many other pressure levels or latitudes. In Fig. S13, we show that the observed variability in this same region for O₃ and H₂O (for 1992-2014) is fairly well matched by the models, although this is somewhat less true for H₂O than for O₃. Besides the importance of circulation effects on tracers in this region, tropopause temperatures will also affect water vapor; this adds some complexity in terms of exactly modeling its variations in the tropical lower stratosphere.

6 Summary and discussion

The climatological averages from FR-WACCM and SD-WACCM for O₃, H₂O, HCl, N₂O, and HNO₃ generally compare favorably (within the 2σ estimated systematic errors) with the Aura MLS data averages for 2005-2014. Model ozone values are usually within ±5-10% of the average observations, except in the UTLS. In the lowest portion of the stratosphere, SD-WACCM generally exceeds the observed ozone means by about 30-50%, with FR-WACCM showing a smaller overestimate; both models also tend to overestimate the amplitude of the annual cycle in this region. There is also a model low bias (by ~10-30%) from 215 to 261 hPa at low latitudes, which could largely be caused by a known MLS high ozone bias in this region. For H₂O, there is a model low bias (by 5-15%) versus MLS data in the upper stratosphere and most of the mesosphere, although some of this arises from a small high bias in MLS H₂O versus other satellite data sets (see Hegglin et al., 2013). Also, the models significantly underestimate the average HNO₃ abundances in the upper stratosphere, notably at high latitudes; this largely appears to stem from missing model ion chemistry, as it relates to particle precipitation effects in the mesosphere, followed by downward wintertime polar transport of enhanced NOx, and subsequent seasonal increases in HNO3. There is also some model overestimation by SD-WACCM of MLS HNO3 (by about 40%) at high latitudes for pressures larger than 100 hPa, although there is a need for further validation of the HNO3 data in this region. In the lower stratosphere at high southern latitudes, the variations in polar winter/spring composition observed by MLS are generally well matched by SD-WACCM, the main exception being for the early winter rate of decrease in HCl, which is too slow in the model. Grooß et al. (2018) have provided further discussion of this discrepancy, which should have little impact on winter/spring polar ozone depletion; indeed, we find good or better agreement between the seasonal high latitude observations and SD-WACCM for ozone and other species.

Regarding the fitted variability tied to the AO and SAO, there are a few discrepancies between model-derived amplitude patterns and the corresponding MLS climatology features, but FR-WACCM and SD-WACCM appear to properly capture the primary processes governing these modes of variability. SD-WACCM generally matches the data sets slightly better than FR-WACCM does. The O_3 AO stratospheric amplitudes are within ~25% of the MLS AO amplitudes. For H_2O , both WACCM versions exhibit AO and SAO patterns that are generally consistent with the observations, and with recently published satellite-derived results (Lossow et al., 2017a); we also note the WACCM underestimation of H_2O AO and SAO amplitudes in the lower stratosphere, although this is the region with the smallest amplitudes (< 0.1 ppmv).

We have provided diagnostics for the fits between the WACCM runs and the MLS deseasonalized anomaly time series. These consist of the correlation coefficient (R² diagnostic) as well as a diagnostic of RMS differences (model versus data), divided by the RMS variability in the data; a combined diagnostic (the ratio of the above two diagnostics) is also used to help differentiate between the two model runs, which are often not too far apart. Not too surprisingly, SD-WACCM, which is driven by realistic dynamics versus time, generally matches the observed zonal monthly mean anomalies significantly better than does FR-WACCM. This holds for all five species that we considered, with larger values of R² and smaller values of the RMS difference

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

diagnostic. In the tropical lower stratosphere, where there is some nudging to equatorial winds for FR-WACCM (and even more so for SD-WACCM, see Sect. 2), the FR-WACCM fits to the data are generally improved. However, details of the observed interplay between SAO, AO, and QBO variations in tropical upper stratospheric ozone are better matched by SD-WACCM variations than by FR-WACCM. Also, FR-WACCM shows poorer agreement with observed seasonal polar winter/spring lower stratospheric variations than does SD-WACCM. Finally, in the mesosphere, the water vapor anomalies are better matched by SD-WACCM than by FR-WACCM.

Variability comparisons represent a more fair and useful metric in terms of the characterization of model quality, in particular for a free-running model. To this end, we have compared the RMS interannual variability from the anomalies in both WACCM models and observations; we have used both MLS data (2005-2014) and data from longer-term series based on GOZCARDS data records for O₃, H₂O, and HCl. One of the main features from these comparisons is that the H₂O variability from the lower stratosphere to the upper mesosphere is underestimated by both model runs used here; this underestimate can reach a factor of two, although more typically, it is of order 30%. This implies that a larger number of years would be needed to detect an actual trend in H₂O than if one uses a model-based prediction (from FR-WACCM); this number of years would be increased by a factor of 1.2 to 1.6, if one uses the two variability factors mentioned above. Apart from the WACCM underestimate of observed H₂O variability, the observed lower stratospheric variations, including significant drops in the H₂O abundance, are better tracked by SD-WACCM than by FR-WACCM. The ozone variability is better represented by the WACCM models, with model/data variability ratios typically within a factor of 0.8 to 1.2. Observed HCl variability is underestimated somewhat by FR-WACCM for the 1992-2003 period, but not for the later (2005-2014) period; the sparser HALOE sampling, compared to MLS, could explain some of the underestimate for the early period, especially in the polar regions. For N₂O, there is also a model underestimate (from both FR-WACCM and SD-WACCM) of the lower stratospheric low latitude variability observed by MLS, although this variability is a small percentage of the mean values.

Regarding trends, the model comparisons versus the longer-term ozone data record from GOZCARDS (version 2.20 being used here) show generally good qualitative agreement in the time series in different latitude bins for both upper and lower stratospheric change. It is clear from such time series that the larger percent variability in the lower stratosphere will continue to render trend detection in this region more difficult than in the upper stratosphere. Based on the Aura MLS O₃ data record itself, which has been deemed very stable (Hubert et al., 2016), we observe robust evidence, considering the 2σ error bars of $\sim 0.2\%$ /yr (estimated using a block bootstrap method), that there is a positive upper stratospheric ozone trend for 2005-2014, at a rate of ~0.2-0.4%/yr. This is true for all three broad mid-latitude and tropical regions considered here (30°N-60°N, 30°S-60°S, and 20°S-20°N), although the evidence is more marginal in the SH mid-latitudes. The WACCM trends estimated using the same regression model as used for the MLS data (anomaly) series show generally good agreement with the data trends, although the error bars are fairly large (for both data and models). Furthermore, the observed trend (relative) dependence on latitude and pressure is well matched by the SD-WACCM trend results. We have not considered the high latitudes in detail in this work, in part because of the significant dynamical variability in that region. In this regard, Stone et al. (2018) recently analyzed model results at high latitudes in the upper stratosphere, and showed that the large variability in that region, including the effects of solar proton events, is likely to mask detection of recovery (for now), although autumn and winter should exhibit the strongest recovery signals. In the lower stratosphere, where larger variability exists, the trends we deduce from the data sets and models agree within fairly large error bars, although there is generally no statistical significance. While there is a tendency for the GOZCARDS merged O₃ record to show small decreasing trends for the 1998-2014, the trend results reverse to near-zero or slightly positive tendencies (albeit with no robust statistical significance) if one considers the MLS data alone for 2005-2014. SD-WACCM trend results seem to track these positive tendencies, although with no robust statistical significance, based on our

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

analyses. The recent work by Ball et al. (2018) indicates a net O₃ decrease in the lower stratosphere from about 1998 to the recent few years; this does not contradict the possibility of a turn-around towards a more positive rate of change in this region during the more recent 10-12 years. The positive tendency noted here may get more robust with the analyses of more years of high quality global ozone profiles, and possibly more aligned with longer-term model expectations. Future detailed analyses of these issues with different regression models and other methods are certainly indicated.

For H₂O, the most statistically significant trend result is an upper stratospheric increase for the post-2005 time period, peaking at slightly more than 0.5%/yr in the lower mesosphere, with MLS and SD-WACCM results agreeing fairly well, and FR-WACCM showing significantly smaller increases. The fact that the last decade has seen more of an upper stratospheric and mesospheric H₂O increase than the previous decade appears to correlate with the very shallow maximum that occurred in the last cycle (number 24) of the solar flux, which seems tied to the shallower dip, and broader overall maximum, in upper mesospheric H₂O (see the H₂O and solar flux time series in Fig. 16 of Froidevaux et al., 2015). However, the non-linear influence of recent changes in methane, which include a plateau from 1999-2006, with a return to rising abundances after that (Schaefer et al., 2016; Nisbet et al., 2016), would also need to be considered for the upper stratosphere. There is also a caveat regarding MLS-derived H₂O trends, given the existence of non-negligible drifts between sonde and MLS H₂O data (Hurst et al., 2016), at least since about 2010. Such drifts can only be partially explained by currently known instrumental degradation issues affecting the MLS retrievals of H₂O, with some impact on other data from the 190 GHz radiometer (N₂O, in particular). Thus, the MLS-derived H₂O trend results obtained here are likely to be upper limits; this can probably explain why the model trends (at least from SD-WACCM) currently lie on the low side of the observed trends. An upcoming update to the MLS retrievals will lead to a reduction (but not an elimination) of the aforementioned drifts between MLS and sonde H₂O data. There is a continued need for cross-comparison of the various (diminishing number of) satellite H₂O data sets, as well as H₂O profiles from satellites and sondes, hopefully leading to a better understanding and mitigation of instrumental issues and drifts between different water vapor observations.

Our HCl trend analyses reveal broad agreement between the lower stratospheric MLS data (2005-2014) and the models, but with some systematic differences. As mentioned in the past, upper stratospheric MLS HCl data are not deemed to be reliable enough for trend studies, since the cessation (in 2006) of the primary target band retrievals for MLS HCl. While lower stratospheric HCl decreases are generally indicated for 2005-2014, there are some hemispheric differences, and a significant increase is suggested in the tropical data at 68 hPa; however, there is only a slight positive trend there from the SD-WACCM result (with no statistical significance). While the lower stratospheric vertical gradients of trend results from MLS HCl are duplicated to some extent by SD-WACCM, the model trends are always on the low side. There is no clear preference for SD-WACCM or FR-WACCM trend results, in comparison to the observed lower stratospheric HCl trends. There have also been past indications of short-term increases in lower stratospheric HCl (Mahieu et al., 2014); the study of such short-term tendencies for implications regarding circulation changes are worth pursuing further (but outside the scope of this work). There is a need for more comparisons of the various HCl measurements, satellite-based and ground-based, as well as models, in order to better understand circulation influences on stratospheric composition, as well as potential measurement-related issues (e.g., from sampling differences or potential drifts).

For N₂O, the asymmetry in MLS-derived trends (for 2005-2012) between hemispheres, with negative trends (of up to about 1%/yr) in the NH mid-latitudes and positive trends (of up to 3%/yr) in the SH mid-latitudes, is in agreement with the asymmetry that exists in SD-WACCM results. The small observed positive trends of ~0.2%/yr in the 100 to 30 hPa tropical region are also consistent with model results (SD-WACCM in particular), which in turn are very close to the known rate of increase in tropospheric N₂O (at a rate of about +0.26%/yr, see WMO, 2014). In the case of HNO₃, the MLS-derived lower stratospheric

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

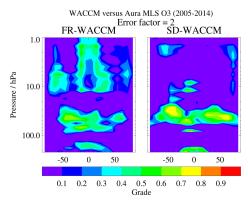
trend differences (for 2005-2014) between hemispheres are opposite in sign to those from N₂O (whose spatial gradients are largely of a sign opposite to those from HNO₃) and in reasonable agreement with both WACCM results, despite large error bars compared to the size of the trends. More detailed analyses would be needed to try to relate such trend asymmetries to changes in age of air, or circulation.

Overall, the models and observations show good agreement in the trends, with somewhat better results for SD-WACCM, which displays good correlations in the trend behavior versus latitude and pressure. However, the error bars are non-negligible, and the choice of start and end dates can have a significant impact on trends or tendencies. Given the existence of significant short-term and decadal-type variations for several lower stratospheric species, one should be cautious not to assign, or extrapolate, a tendency based on even a decade of data, to an underlying longer-term trend.

The diagnostics provided in this WACCM model evaluation can help distinguish even fairly subtle differences between models and observations, as well as between models. The generally improved fits to observations from a specified dynamics model versus a free-running model are to be expected, but also need to be documented (part of the aim of this work). We are also reminded that observations have their own systematic issues, and close collaboration between modeling groups and instrument teams can help untangle issues that might be more driven by, or at least influenced by, species-dependent instrumental effects. Especially when comparing longer-term model time series to observations, even small systematic effects such as measurement drifts, or data merging issues, can become important for trend diagnostics. Finally, independent CCMs are not created in the same exact way, and nudging approaches for free-running and specified dynamics models can vary; for example, some models have an internally-generated QBO, but most do not. While this study focused on (CESM1) WACCM runs, further studies of the differences between high quality observations and various international models of atmospheric composition would be useful, to put this work in perspective. This could also be expanded to include some species not considered in this work, and/or with more of a focus on the upper troposphere.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.


Appendix A

A1 Examples of model grades

A grading method that has been applied in some previous comparisons (e.g., see Douglass et al., 1999; Waugh and Eyring, 2008) between atmospheric model values (M_n) and observed values (O_n) utilizes Eq. (A1) below to arrive at grades between 0 and 1 (and if a grade is < 0, it can be set to 0):

$$grade = 1 - \sum_{1}^{N} \frac{M_n - O_n}{E_f \times \sigma_n}$$
 (A1)

with index n (in a given time series) varying between 1 and N (the total number of monthly values being compared for a given latitude/pressure bin), and σ_n representing the error in the observations. While the error factor E_f should probably be set to 2 or 3, this gives grades that are too small (close to zero or negative) if one applies such a formula to the MLS O₃ or H₂O time series, specifically to data sets with pretty well defined total measurement errors (provided as 2σ error estimates, per Sect. 4, meaning an error factor of 2). The grades shown here in Figs. A1 and A2 correspond to error factors (E_f) of 2 and 4, respectively. Figure A2 leads to O₃ and H₂O grades that are more useful than Fig. A1; it also shows similarities with the diagnostic based on the RMS of the differences between model and data, as shown in Sect. 4 (see the description of this diagnostic in Appendix A2).

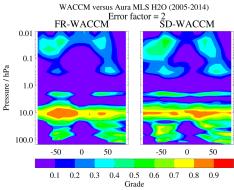


Figure A1. Examples of grades for model evaluations of O₃ (top two panels) and H₂O (bottom two panels), using a grading methodology that has been used in the past (see Eq. A1), applied to both FR-WACCM (left panels) and SD-WACCM (right panels) time series versus Aura MLS time series from 2005 through 2014. These grades are for an error factor of 2 (in Eq. A1).

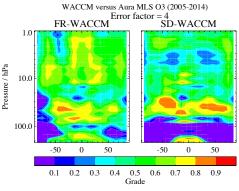
Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

5 6

7 8

9


18 19

20

21

22

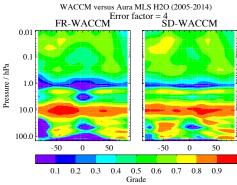


Figure A2. As in Fig. A1, for model evaluation grades of O_3 and H_2O (WACCM versus Aura MLS data), but for a value of 4 (rather than 2) for the error factor (see Eq. A1).

A2 RMS difference diagnostic

Given a model time series $M_i(t)$ and an observational time series (both series here representing deseasonalized anomalies) $O_i(t)$, the difference values between the two anomaly series are simply given by

$$10 \Delta_i(t) = M_i(t) - O_i(t) (A2)$$

and the root mean square (RMS) of these anomaly differences (RMSdif) is expressed as

$$12 \quad RMSdif = \sqrt{\frac{1}{N} \sum_{i} \Delta_{i}^{2}}$$
 (A3)

13 The RMS value (variability) of the observational series (of anomalies) in this case is

$$RMS_O = \sqrt{\frac{1}{N} \sum_i O_i^2}$$
 (A4)

One of the diagnostics that we use in Sect. 4 to compare how well different models match up with the observed time series is given by

$$17 D_{RMSdif} = \frac{_{RMSdif}}{_{RMS_0}} (A5)$$

A3 Regression model

Functional form: The MLR model and fitting methodology used here is similar to the methods used by many others in the past, with a linear model description that uses annual, semi-annual, QBO, and ENSO terms. Thus, the model function to be fitted for coefficients a, b, c_n , d_n , f_1 , f_2 , and f_3 has the familiar form:

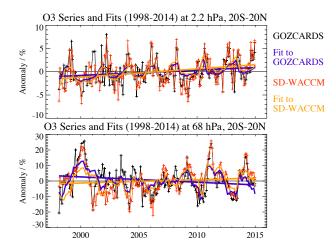
Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

 $y(t) = a + b(t - t_m) + \sum_{n} (c_n \sin 2\pi t / P_n + d_n \cos 2\pi t / P_n)$ 3 $+ f_1 QBO_1(t) + f_2 QBO_2(t) + f_3 ENSO(t)$ (A6)

with the (monthly series) time variable expressed by t, and t_m chosen as the series mid-point; the linear trend term is coefficient b above. The sine and cosine functions provide for periodic variations with periods P_n . For our work, we use the two primary shorter-term periodic oscillations, annual (12-month period) and semi-annual (6-month period), in Equation (A6). The QBO is also a major source of variability in stratospheric composition time series. As a QBO proxy, we include the variability in monthly mean tropical wind series, as is commonly done; we use the linear combination of (roughly orthogonal) equatorial wind series at 50 hPa and 30 hPa as the QBO1 and QBO2 functions above, to account for phase shifts in the series at different locations. Monthly mean zonal equatorial wind data are made available by the Freie Universität Berlin (see http://www.geo.fuberlin.de/en/met/ag/strat/produkte/qbo/ for data access information and references). We have also tested fits with the zonal mean wind vertical shear (gradient) rather than the wind itself as a proxy, but this did not make significant changes in the trends (or improvements in the residuals). The ENSO proxy follows the monthly mean multivariate ENSO Index (MEI), which combines data from six main geophysical variables over the tropical Pacific (see Wolter and Timlin, 1993, 1998; https://www.esrl.noaa.gov/psd/enso/mei/index.html). Also, since the solar cycle 11-yr term can be highly correlated with the linear term, especially for shorter-term records like the time series from MLS data alone, we have not added a proxy solar term in this study. For further discussions of alternate fitting methods (e.g., methods using effective equivalent chlorine time series as a proxy), the reader is referred to the abundant literature on trend assessments (see WMO, 2014 and references therein). Our main goal here is to retrieve trends and trend errors from the data and the models in the same way. An example of deseasonalized ozone time series in the tropics at two pressure levels is provided in Fig. A3, which shows MLS data and SD-WACCM time series, along with the fits and the linear trends.


Trend errors: For the evaluation of error bars in the linear trends, we have used the method of bootstrap resampling (Efron and Tibshirani, 1986). As others have done for ozone trend analyses (Randel and Thompson, 2011, Bourassa et al., 2014), we have applied this using block bootstrapping (using yearly blocks of data), thereby preserving some of the dependency in the time series. Basically, one samples and (randomly) replaces blocks of yearly data for a large number of resampling cases (on the residuals), and then calculates the standard deviation of the large number of trend results (linear fits) to arrive at the trend uncertainties; note that we use 2σ values as error bars in our trend comparison plots (which is very close to the 95% bounds). We have used 20,000 samples in our bootstrap analyses; changing this number (e.g., by several thousand) does not alter the results significantly, as long as one chooses a large enough total number of resampled cases. An alternative method is to attempt to correct trend uncertainties for the autocorrelation of the residuals after the regression fit (Tiao et al., 1990; Weatherhead et al., 1998; Santer et al., 2000). The existence of non-random residuals effectively implies that the number of independent data points is less than the number making up the original time series. The end result is that trend uncertainties are (and should be) larger than if one neglects these effects. We find that trend errors from this bootstrap method for our time series examples are often larger than the more simplistic/standard calculations by factors ranging from about 1.2 to 2 or more. We have checked our trend error calculations with the OSIRIS team, based on a sample time series, as they have used the same block bootstrap approach (Bourassa et al., 2014).

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

Figure A3. Deseasonalized monthly mean anomaly time series for O₃ (%) at 2.2 hPa (top panel) and 68 hPa (bottom panel), for 1998 through 2014, for averages over 20°S-20°N. Note that the y-axis range for 68 hPa (bottom) is 3 times larger than for 2.2 hPa (top). The data set (black) is from the GOZCARDS ozone record, with the SD-WACCM (simulated) series (red) also shown. Fits to the observational series are in purple, and fits to the model series are in orange; the fitted time series functions (curves) and the fitted linear components (straight lines) are shown.

Data availability. Aura MLS data used in this work are monthly zonal means derived from Level 2 MLS data, which are accessible from the Goddard Earth Sciences Data and Information Services Center (GES DISC), funded by NASA's Science Mission Directorate; a link for MLS Level 2 data access can be found at https://mls.jpl.nasa.gov/data/. GOZCARDS data sets can be obtained (by entering GOZCARDS in the search) at http://disc.gsfc.nasa.gov. More recent years (and version updates) will be made available at this site, or can be obtained by request to the first author. The WACCM model output used here is provided in the references and is available from the NCAR Earth System https://www.earthsystemgrid.org/search.html?Project=CCMI1. For WACCM, we thank NASA Goddard Space Flight Center for the MERRA data (accessed freely online at http://disc.sci.gsfc.nasa.gov/).

Author contributions. L. Froidevaux produced the majority of this manuscript, including the Figures. D. Kinnison provided the model runs used in these comparisons to observational data from Aura MLS and GOZCARDS; he also described the models used here and provided substantial guidance and comments for this manuscript. H.-J. Wang and J. Anderson, along with L. Froidevaux, were key participants in the development and creation of the GOZCARDS data sets, including the recently updated version (2.20) for merged ozone used herein. R. Fuller was another key participant in the GOZCARDS data production, and he also provided programming support for these model intercomparisons.

Competing interests. The authors declare that they have no conflicts of interest.

Special issue statement. This manuscript is intended as part of the Chemistry-Climate Modelling Initiative (CCMI) inter-journal special issue (ACP/AMT/ESSD/GMD SI).

Acknowledgements. Work at the Jet Propulsion Laboratory, California Institute of Technology, was performed under contract with the National Aeronautics and Space Administration (NASA). GOZCARDS data were initially produced under the NASA Making Earth System Data Records for Use in Research Environments (MEaSUREs) program, with data continuity/updates now provided under MLS funding. We acknowledge insights and comments regarding aspects of this work from Rolando Garcia, Nathaniel Livesey, Jessica Neu, and Michelle Santee. We also appreciate discussions and comparison work regarding trends and error bars with Doug Degenstein and Chris Roth, as well as Emmanuel Mahieu (and via some of his European contacts). The National Center for Atmospheric Research (NCAR) is sponsored by the U.S. National Science Foundation (NSF). WACCM is a component of NCAR's Community Earth System Model (CESM), which is supported by the NSF and the Office of Science of

9

10

11

12

13

14

15

19

20

21

22

23

27

28

29 30

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

the U.S. Department of Energy. Computing resources for WACCM were provided by NCAR's Climate Simulation Laboratory, sponsored by NSF and other agencies; we also acknowledge the computational and storage resources of NCAR's Computational and Information Systems Laboratory (CISL).

References

Andersson, M. E., Verronen, P. T., Marsh, D. R., Pälvärinta, S.-M., and Plane, J. M. C.: WACCM-D-Improved modeling of nitric acid and active chlorine during energetic particle precipitation, J. Geophys. Res. Atmos., 121, 10,328–10,341, doi:10.1002/2015JD024173, 2016.

Arnold, F., Buhrke, T., and Qiu, S.: Evidence for stratospheric ozone-depleting heterogeneous chemistry on volcanic aerosols from El Chichon, Nature, 348, 49-50, 1990.

Ball, W. T., Alsing, J., Mortlock, D. J., Rozanov, E. V., Tummon, F., and Haigh, J. D.: Reconciling differences in stratospheric ozone composites, Atmos. Chem. Phys., 17, 12269–12302, https://doi.org/10.5194/acp-17-12269-2017, 2017.

Ball, W.T., Alsing, J., Mortlock, D. J., Staehelin, J., Haigh, J. D., Peter, T., Tummon, F., Stübi, R., Stenke, A., Anderson, J., Bourassa, A., Davis, S. M., Degenstein, D., Frith, S., Froidevaux, L., Roth, C., Sofieva, V., Wang, R., Wild, J., Yu, P., Ziemke, J. R., and Rozanov, E. V.: Continuous decline in lower stratospheric ozone offsets ozone layer recovery, Atmos. Chem. Phys., 18, 1379–1394, https://doi.org/10.5194/acp-18-1379-2018, 2018.

Bandoro, J., Solomon, S., Santer, B. D., Kinnison, D. E., and Mills, M. J.: Detectability of the impacts of ozone-depleting substances and greenhouse gases upon stratospheric ozone accounting for nonlinearities in historical forcings, Atmos. Chem. Phys., 18, 143-166, https://doi.org/10.5194/acp-18-143-2018, 2018.

Böhringer, H., Fahey, D.W., Fehsenfeld, F. C., and Ferguson, E. E.: The role of ion-molecule reactions in the conversion of N2O₅ to HNO₃ in the stratosphere, Planet. Space. Sci., 31, 185–191, 1983.

Bönisch, H., Engel, A., Birner, Th., Hoor, P., Tarasick, D. W., and Ray, E. A.: On the structural changes in the Brewer–Dobson circulation after 2000, Atmos. Chem. Phys., 11, 3937–3948, doi:10.5194/acp-11-3937-2011, 2011.

Bourassa, A. E., Degenstein, D. A., Randel, W. J., Zawodny, J. M., Kyrölä, E., McLinden, C. A., Sioris, C. E., and Roth, C. Z.: Trends in stratospheric ozone derived from merged SAGE II and Odin-OSIRIS satellite observations, Atmos. Chem. Phys., 14, 6983-6994, doi:10.5194/acp-14-6983-2014, 2014.

Brinkop, S., Dameris, M., Jockel, P., Garny, H., Lossow, S., and Stiller, G.: The millennium water vapour drop in chemistry-climate model simulations, Atmos. Chem. Phys., 16, 8125-8140, www.atmos-chem-phys.net/16/8125/2016, doi:10.5194/acp-16-8125-2016, 2016.

Callis, L. B., and Lambeth, J. D.: NO_y formed by precipitating electron events in 1991 and 1992: Descent into the stratosphere as observed by ISAMS, Geophys. Res. Lett., 25, 1875-1878, 1998.

Calvo, N, Garcia, R. R., and Kinnison, D. E.: Revisiting Southern Hemisphere polar stratospheric temperature trends in WACCM: The role of dynamical forcing, in press, Geophys. Res., Lett., 44, 3402-3410, doi:10.1002/2017GL072792, 2017.

Carpenter, L. J., Reimann, S., Burkholder, J. B., Clerbaux, C., Hall, B. D., Hossaini, R., Laube, J. C., and Yvon-Lewis, S. A.: Ozone-depleting substances (ODSs) and other gases of interest to the Montreal Protocol, chap. 1, in: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project – Report No. 55, World Meteorological Organization, Geneva, Switzerland, 2014.

Damadeo, R. P., Zawodny, J. M., Thomason, L. W., and Iyer, N.: SAGE version 7.0 algorithm: application to SAGE II, Atmos. Meas. Tech., 6, 3539–3561, https://doi.org/10.5194/amt-6-3539-2013, 2013.

Davis, S. M., Rosenlof, K. H., Hassler, B., Hurst, D. F., Read, W. G., Vömel, H., Selkirk, H., Fujiwara, M., and Damadeo, R.: The Stratospheric Water and Ozone Satellite Homogenized (SWOOSH) database: a long-term database for climate studies, Earth Syst. Sci. Data, 8, 461–490, https://doi.org/10.5194/essd-8-461-2016, 2016.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

 $\overline{33}$

- de Zafra, R., V. Chan, S. Crewell, C. Trimble, and J. M. Reeves, Millimeter wave spectroscopic measurements over the South Pole, 3, The behavior of stratospheric nitric acid through polar fall, winter and spring, J. Geophys Res., 102, 1399-1410, 1997.
 - de Zafra, R. L. and Smyshlyaev, S. P.: On the formation of HNO₃ in the Antarctic mid to upper stratosphere in winter, J. Geophys. Res., 106, 23115–23125, doi:10.1029/2000JD000314, 2001.
 - Dessler, A. E., Schoeberl, M. R., Wang, T., Davis, S. M., Rosenlof, K. H., and Vernier, J.-P.: Variations of stratospheric water vapor over the past three decades, J. Geophys. Res. Atmos., 119, 12,588-12,598, doi:10.1002/2014JD021712, 2014.
- Dhomse, S., et al.: Estimates of Ozone Return Dates from Chemistry-Climate Model Initiative Simulations, Atmos. Chem. Phys.,
 in review, 2018.
 - Douglass, A. R., Prather, M. J., Hall, T. M., S. E. Strahan, S. E., Rasch, P. J., Sparling, L. C., Coy, L., and Rodriguez, J. M.: Choosing meteorological input for the global modeling initiative assessment of high-speed aircraft, J. Geophys. Res., 104, 27,545-27,564, 1999.
 - Ern, M., Preusse, P., and Riese, M.: Driving of the SAO by gravity waves as observed from satellite, Ann. Geophys., 33, 483–504, www.ann-geophys.net/33/483/2015/, doi:10.5194/angeo-33-483-2015, 2015.
 - Eyring, V., et al.: Overview of IGAC/SPARC Chemistry-Climate Model Initiative (CCMI) Community Simulations in Support of Upcoming Ozone and Climate Assessments, SPARC Newsletter, 40, 48-66, January 2013, 2013.
 - Froidevaux, L., Livesey, N. J., Read, W. G., Salawitch, R. J., Waters, J. W., Drouin, B., MacKenzie, I. A., Pumphrey, H. C., Bernath, P., Boone, C., Nassar, R., Montzka, S., Elkins, J., Cunnold, D., and Waugh, D.: Temporal decrease in upper atmospheric chlorine, Geophys. Res. Lett., 33, L23813, doi:10.1029/2006GL027600, 2006.
 - Froidevaux, L., Jiang, Y. B., Lambert, A., Livesey, N. J., Read, W. G., Waters, J. W., Fuller, R. A., Marcy, T. P., Popp, P. J., Gao, R. S., Fahey, D. W., Jucks, K. W., Stachnik, R. A., Toon, G. C., Christensen, L. E., Webster, C. R., Bernath, P. F., Boone, C. D., Walker, K. A., Pumphrey, H. C., Harwood, R. S., Manney, G. L., Schwartz, M. J., Daffer, W.H., Drouin, B. J., Cofield, R. E., Cuddy, D. T., Jarnot, R. F., Knosp, B. W., Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., and Wagner, P. A.: Validation of Aura Microwave Limb Sounder HCl measurements, J. Geophys. Res., 113, doi:10.1029/2007JD009025, D15S25, 2008a.
 - Froidevaux, L., Jiang, Y. B., Lambert, A., Livesey, N. J., Read, W. G., Waters, J. W., Browell, E. V., Hair, J. W., Avery, M. A., McGee, T. J., Twigg, L. W., Sumnicht, G. K., Jucks, K. W., Margitan, J. J., Sen, B., Stachnik, R. A., Toon, G. C., Bernath, P. F., Boone, C. D., Walker, K. A., Filipiak, M. J., Harwood, R. S., Fuller, R. A., Manney, G. L., Schwartz, M. J., Daffer, W.H., Drouin, B. J., Cofield, R. E., Cuddy, D. T., Jarnot, R. F., Knosp, B. W., Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., and Wagner, P. A.: Validation of Aura Microwave Limb Sounder stratospheric and mesospheric ozone measurements, J. Geophys. Res., 113, doi:10.1029/2007JD008771, D15S20, 2008b.
 - Froidevaux, L., Anderson, J., Wang, H.-J., Fuller, R. A., Schwartz, M. J., Santee, M. L., Livesey, N. J., Pumphrey, H. C., Bernath, P. F., Russell III, J. M., and McCormick, M. P.: Global Ozone Chemistry And Related trace gas Data records for the Stratosphere (GOZCARDS): methodology and sample results with a focus on HCl, H2O, and O3, Atmos. Chem. Phys., 15, 10471–10507, https://doi.org/10.5194/acp-15-10471-2015, 2015.
 - Fueglistaler, S.: Step-wise changes in stratospheric water vapor? J. Geophys. Res., 117, D13302, doi:10.1029/2012JD017582, 2012.
 - Fueglistaler, S. and Haynes, P. H.: Control of interannual and longer-term variability of stratospheric water vapor, J. Geophys. Res., 110, 24 108, D24 108, doi:10.1029/2005JD006019, 2005.
 - Funke, B., Baumgaertner, A., Calisto, M., Egorova, T., Jackman, C. H., Kieser, J., Krivolutsky, A., Lopez-Puertas, M., Marsh, D. R., Reddmann, T., Rozanov, E., Salmi, S.-M., Sinnhuber, M., Stiller, G. P., Verronen, P. T., Versick, S., von Clarmann, T., Vyushkova, T. Y., Wieters, N., and Wissing, J. M.: Composition changes after the "Halloween" solar proton event: The High-Energy Particle Precipitation in the Atmosphere (HEPPA) model versus MIPAS data intercomparison study, Atmos. Chem. Phys., 11(3), 9089–9139, doi:10.5194/acp-11-9089-2011, 2011.
 - Garcia, R. R., D. Marsh, D. E. Kinnison, B. Boville, and F. Sassi, Simulations of secular trends in the middle atmosphere, 1950-2003, J. Geophys. Res., 112, D09301, doi:10.1029/2006JD007485, 2007.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

 $\overline{33}$

- Garcia, R. R., Smith, A. K., Kinnison, D. E., de la Camara, A. and Murphy, D.: Modification of the gravity wave parameterization in the Whole Atmosphere Community Climate Model: Motivation and results, J. Atmos. Sci., 74, 275-291, doi:10.1175/JAS-D-16-0104.1, 2017.
- Gebhardt, C., Rozanov, A., Hommel, R., Weber, M., Bovensmann, H., Burrows, J. P., Degenstein, D., Froidevaux, L., and Thompson, A. M.: Stratospheric ozone trends and variability as seen by SCIAMACHY from 2002 to 2012, Atmos. Chem. Phys., 14, 831–846, doi:10.5194/acp-14-831-2014, 2014.
 - Gilford, D. M., Solomon, S., and Portmann, R. W.: Radiative impacts of the 2011 abrupt drops in water vapor and ozone in the tropical tropopause layer, J. Climate, 29, 595-612, doi:10.1175/JCLI-D-15-0167.1, 2016.
 - Grooß, J.-U., Müller, R., Spang, R., Tritscher, I., Wegner, T., Chipperfield, M. P., Feng, W., Kinnison, D. E., and Madronich, S.: On the discrepancy of HCl processing in the dark polar vortices, Atmos. Che. Phys. Discuss., https://doi.org/10.5194/acp-2018-202, 2018.
 - Haenel, F. J., Stiller, G. P., von Clarmann, T., Funke, B., Eckert, E., Glatthor, N., Grabowski, U., Kellmann, S., Kiefer, M., Linden, A., and Reddmann, T.: Reassessment of MIPAS age of air trends and variability, Atmos. Chem. Phys., 15, 13,161–13,176, doi:10.5194/acp-15-13161-2015, 2015.
 - Harris, N. R. P., Hassler, B., Tummon, F., Bodeker, G. E., Hubert, D., Petropavlovskikh, I., Steinbrecht, W., Anderson, J., Bhartia, P. K., Boone, C. D., Bourassa, A., Davis, S. M., Degenstein, D., Delcloo, A., Frith, S. M., Froidevaux, L., Godin-Beekmann, S., Jones, N., Kurylo, M. J., Kyrölä, E., Laine, M., Leblanc, S. T., Lambert, J.-C., Liley, B., Mahieu, E., Maycock, A., de Maziere, M., Parrish, A., Querel, R., Rosenlof, K. H., Roth, C., Sioris, C., Staehelin, J., Stolarski, R. S., Stubi, R., Tamminen, J., Vigouroux, C., Walker, K., Wang, H. J., Wild, J., and Zawodny, J. M.: Past changes in the vertical distribution of ozone Part 3: Analysis and interpretation of trends, Atmos. Chem. Phys., 15, 9965-9982, https://doi.org/10.5194/acp-15-9965-2015, 2015.
- Hegglin, M. I., Tegtmeier, S., Anderson, J., Froidevaux, L., Fuller, R., Funke, B., Jones, A., Lingenfelser, G., Lumpe, J.,
 Pendlebury, D., Remsberg, E., Rozanov, A., Toohey, M., Urban, J., von Clarmann, T., Walker, K. A., Wang, R., and Weigel, K.:
 SPARC Data Initiative: Comparison of water vapor climatologies from international satellite limb sounders, J. Geophys. Res.
 Atmos., 118, 11,824–11,846, doi: 10.1002/jgrd.50752, 2013.
 - Hegglin, M. I., Plummer, D. A., Shepherd, T. G., Scinocca, J. F., Anderson, J., Froidevaux, L., Funke, B., Hurst, D. and Rozanov, A., Urban, J., von Clarmann, T., Walker, K. A., Wang, H. J., Tegtmeier, S., and Weigel, K.: Vertical structure of stratospheric water vapour trends derived from merged satellite data, Nat. Geosci., 7, 768–776, https://doi.org/10.1038/ngeo2236, 2014.
 - Holton, J. R., and Gettelman, A.:Horizontal transport and the dehydration of the stratosphere, Geophys. Res. Lett., 28, 2799–2802, 2001.
 - Hubert, D., Lambert, J.-C., Verhoelst, T., Granville, J., Keppens, A., Baray, J.-L., Cortesi, U., Degenstein, D. A., Froidevaux, L., Godin-Beekmann, S., Hoppel, K. W., Kyrölä, E., Leblanc, T., Lichtenberg, G., McElroy, C. T., Murtagh, D., Nakane, H., Russell III, J. M., Salvador, J., Smit, H. G. J., Stebel, K., Steinbrecht, W., Strawbridge, K. B., Stübi, R., Swart, D. P. J., Taha, G., Thompson, A. M., Urban, J., van Gijsel, J. A. E., von der Gathen, P., Walker, K. A., Wolfram, E., and Zawodny, J. M.: Groundbased assessment of the bias and long-term stability of fourteen limb and occultation ozone profile data records, Atmos. Meas. Tech., 9, 2497-2534, https://doi.org/10.5194/amt-9-2497-2016, 2016.
 - Hurst, D. F., Oltmans, S. J., Vomel, H., Rosenlof, K. H., Davis, S. M., Ray, E. A., Hall, E. G., and Jordan, A.: Stratospheric water vapor trends over Boulder, Colorado: Analysis of the 30 year Boulder record, J. Geophys. Res., 116, D02306, doi:10.1029/2010JD015065, 2011.
- Hurst, D. F., Read, W. G., Vömel, H., Selkirk, H. B., Rosenlof, K. H., Davis, S. M., Hall, E. G., Jordan, A. F., and Oltmans, S. J.:
 Recent divergences in stratospheric water vapor measurements by frost point hygrometers and the Aura Microwave Limb Sounder, Atmos. Meas. Tech., 9, 4447–4457, www.atmos-meas-tech.net/9/4447/2016/, doi:10.5194/amt-9-4447-2016, 2016.
- Imai, K., Manago, N., Mitsuda, C., Naito, Y., Nishimoto, E., Sakazaki, T., Fujiwara, M., Froidevaux, L., von Clarmann, T.,
 Stiller, G. P., Murtagh, D. P., Rong, P.-P., Mlynczak, M. G., Walker, K. A., Kinnison, D. E., Akiyoshi, H., Nakamura, T.,
 Miyasaka, T., Nishibori, T., Mizobuchi, S., Kikuchi, K.-I., Ozeki, H., Takahashi, C., Hayashi, H., Sano, T., Suzuki, M.,
 Takayanagi, M., and Shiotani, M.: Validation of ozone data from the Superconducting Submillimeter-Wave Limb-Emission
- 60 Sounder (SMILES), J. Geophys. Res.-Atmos., 118, 5750–5769, doi:10.1002/jgrd.50434, 2013.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

9

10

11

12

13

14

15

16

17 18

19

25

26 27

28

29 30

31

32 33

34

35

36 37

38

39

40

41 42

43

44

45

46

47

48

49 50

51

52 53

54

55 56

57

58

59

60

2 3 Jackman, C. H., Marsh, D. R., Vitt, F. M., Garcia, R. R., Fleming, E. L., Labow, G. J., Randall, C. E., Lopez-Puertas, M., Funke, B., von Clarmann, T., and Stiller, G. P.: Short- and medium-term atmospheric constituent effects of very large solar proton 4 5 6 7 8 events, Atmos. Chem. Phys., 8, 765-785, doi:10.5194/acp-8-765-2008, 2008.

Jensen, E. and Pfister, L.: Transport and freeze-drying in the tropical tropopause layer, J. Geophys. Res. Atmos., 109, D02207, http://dx.doi.org/10.1029/2003JD004022, 2004.

Jiang, Y. B., Froidevaux, L., Lambert, A., Livesey, N. J., Read, W. G., Waters, J. W., Bojkov, B., Leblanc, T., McDermid, I. S., Godin-Beekmann, S., Filipiak, M. J., Harwood, R. S., Fuller, R. A., Daffer, W. H., Drouin, B. J., Coffeld, R. E., Cuddy, D. T., Jarnot, R. F., Knosp, B. W., Perun, V. S., Schwartz, M. J., Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A., Allaart, M., Andersen, S. B., Bodeker, G., Calpini, B., Claude, H., Coetzee, G., Davies, J., De Backer, H., Dier, H., Fujiwara, M., Johnson, B., Kelder, H., Leme, N. P., Koenig-Langlo, G., Kyro, E., Laneve, G., Fook, L. S., Merrill, J., Morris, G., Newchurch, M., Oltmans, S., Parrondos, M. C., Posny, F., Schmidlin, F., Skrivankova, P., Stubi, R., Tarasick, D., Thompson, A., Thouret, V., Viatte, P., Vömel, H., von Der Gathen, P., Yela, M., and Zablocki, G.: Validation of the Aura Microwave Limb Sounder Ozone by Ozonesonde and Lidar Measurements, J. Geophys. Res., 112, D24S34, doi:10.1029/2007JD008776, 2007.

Kawa, S. R., Kumer, J. B., Douglass, A. R., Roche, A. E., Smith, S. E., Taylor, F. W., and Allen, D. J., Missing chemistry of reactive nitrogen in the upper stratospheric polar winter, Geophys. Res. Lett., 22, 2629-2632,

Kinnison, D. E., Brasseur, G. P., Walters, S., Garcia, R. R., Sassi, F., Boville, B. A., Marsh, D., Harvey, L., Randall, C., Randel, W., Lamarque, J.-F., Emmons, L. K., Hess, P., Orlando, J., Tyndall, J., and Pan, L.: Sensitivity of chemical tracers to meteorological parameters in the MOZART-3 chemical transport model, J. Geophys. Res., 112, D20302, doi:10.1029/2006JD007879, 2007.

Kunz, A., Pan, L., Konopka, P., Kinnison, D., and Tilmes, S.: Chemical and dynamical discontinuity at the extratropoical tropopause based on START08 and WACCM analysis, J. Geophys. Res., 116, D24302, doi:10.1029/2011JD016686, 2011.

Kuttippurath, J., Bodeker, G. E., Roscoe, H. K., and Nair, P. J.: A cautionary note on the use of EESC-based regression analysis for ozone trend studies, Geophys. Res. Lett., 42, 162-168, doi:10.1002/2014GL062142, 2015.

Kvissel, O.-K., Orsolini, Y. J., Stordal, F., Isaksen, I. S. A., and Santee, M. L.: Formation of stratospheric nitric acid by a hydrated ion cluster reaction: Implications for the effect of energetic particle precipitation on the middle atmosphere, J. Geophys. Res., 117, D16301, doi:10.1029/2011JD017257, 2012.

Lamarque, J.-F., Emmons, L. K., Hess, P. G., Kinnison, D. E., Tilmes, S., Vitt, F., Heald, C. L., Holland, E. A., Lauritzen, P. H., Neu, J., Orlando, J. J., Rasch, P. J., and Tyndall, G. K.: CAM-chem: description and evaluation of interactive atmospheric chemistry in the Community Earth System Model, Geosci. Model Dev., 5, 369-411, https://doi.org/10.5194/gmd-5-369-2012, 2012.

Lambert, A., Read, W. G., Livesey, N. J., Santee, M. L., Manney, G. L., Froidevaux, L., Wu, D. L., Schwartz, M. J., Pumphrey, H. C., Jimenez, C., Nedoluha, G. E., Cofield, R. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Pickett, H. M., Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A., Waters, J. W., Jucks, K. W., Toon, G. C., Stachnik, R. A., Bernath, P. F., Boone, C. D., Walker, K. A., Urban, J., Murtagh, D., Elkins, J. W., and Atlas, E.: Validation of the Aura Microwave Limb Sounder stratospheric water vapour and nitrous oxide measurements, J. Geophys. Res., 112, D24S36, doi:10.1029/2007JD008724, 2007.

Langematz, U., Schmidt, F., Kunze, M., Bodeker, G. E., and Braesicke, P.: Antarctic ozone depletion between 1960 and 1980 in observations and chemistry-climate model simulations, Atmos. Chem. Phys., 16, 15,619-15,627, www.atmos-chemphys.net/16/15619/2016/, doi:10.5194/acp-16-15619-2016, 2016.

Lin, S.-J., A "vertically-Lagrangian" finite-volume dynamical core for global atmospheric models, Mon. Wea. Rev., 132, 2293-2307, 2004.

Livesey, N. J., Filipiak, M. J., Froidevaux, L., Read, W. G., Lambert, A., Santee, M. L., Jiang, J. H., Waters, J. W., Cofield, R. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J., Fuller, R. A., Jarnot, R. F., Jiang, Y. B., Knosp, B. W., Li, Q. B., Perun, V. S., Schwartz, M. J., Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner, P. A., Pumphrey, H. C., Avery, M., Browell, E. V., Cammas, J.-P., Christensen, L. E., Edwards, D. P., Emmons, L. K., Gao, R.-S., Jost, H.-J., Loewenstein, M., Lopez, J. D., Nedelec, P., Osterman, G. B., Sachse, G. W., and Webster, C. R.: Validation of Aura Microwave Limb Sounder O₃

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

 $\overline{33}$

- 1 and CO observations in the upper troposphere and lower stratosphere, J. Geophys. Res., 113, D15S02, doi:10.1029/2007JD008805, 2008.
- Livesey, N. J., Read, W. G., Froidevaux, L., Lambert, A., Manney, G. L., Pumphrey, H. C.,
 Santee, M. L., Schwartz, M. J., Wang, S., Cofield, R. E., Cuddy, D. T., Fuller, R. A., Jarnot, R. F., Jiang, J. H., Knosp, B. W.,
 Stek, P. C., Wagner, P. A., and Wu, D. L.: EOS MLS Version 4.2x Level 2 data quality and description document, Tech. rep., Jet
 Propulsion Laboratory D-33509 Rev. D, available from http://mls.jpl.nasa.gov/, 2018.
- Lopez-Puertas, M., Funke, B., Gil-Lopez, S., von Clarmann, T., Stiller, G. P., Höpfner, M., Kellmann, S., Mengistu Tsidu, G.,
 Fischer, H., and Jackman, C. H.: HNO₃, N₂O₅ and ClONO₂ Enhancements after the October–November 2003 Solar Proton
 Events, J. Geophys. Res., 110, A09S44, doi:10.1029/2005JA011051, 2005b.
- Lossow, S., Khosrawi, F., Nedoluha, G. E., Azam, F., Bramstedt, K., Burrows, J. P., Dinelli, B. M., Eriksson, P., Espy, P. J., García-Comas, M., Gille, J. C., Kiefer, M., Noël, S., Raspollini, P., Read, W. G., Rosenlof, K. H., Rozanov, A., Sioris, C. E., Stiller, G. P., Walker, K. A., and Weigel, K.: The SPARC water vapour assessment II: comparison of annual, semi-annual and quasi-biennial variations in stratospheric and lower mesospheric water vapour observed from satellites, Atmos. Meas. Tech., 10, 1111–1137, https://doi.org/10.5194/amt-10-1111-2017, 2017a.
 - Lossow, S., Garny, H., and Jöckel, P.: An "island" in the stratosphere on the enhanced annual variation of water vapour in the middle and upper stratosphere in the southern tropics and subtropics, Atmos. Chem. Phys., 17, 11521–11539, https://doi.org/10.5194/acp-17-11521-2017, 2017b.
 - Mahieu, E., Chipperfield, M. P., Notholt, J., Reddmann, T., Anderson, J., Bernath, P. F., Blumenstock, T., Coffey, M. T., Dhomse, S. S., Feng, W., Franco, B., Froidevaux, L., Griffith, D. W. T., Hannigan, J. W., Hase, F., Hossaini, R., Jones, N. B., Morino, I., Murata, I., Nakajima, H., Palm, M., Paton-Walsh, C., Russell III, J. M., Schneider, M., Servais, C., Smale, D., and Walker, K. A.: Recent Northern Hemisphere stratospheric HCl increase due to atmospheric circulation changes, Nature, 515, 104-107, doi:10.1038/nature13857, 2014.
 - Marsh, D. R., Mills, M. J., Kinnison, D. E., Lamarque, J.-F., Calvo, N., and Polvani, L. M.: Climate change from 1850 to 2005 simulated in CESM1 (WACCM), Journal of Climate, 26 (19), doi:10.1175/JCLI-D-12-00558.1, 2013.
 - Matthes, K., Marsh, D. R., Garcia, R. R., Kinnison, D. E., Sassi, F., and Walters, S.: Role of the QBO in modulating the influence of the 11-year solar cycle on the atmosphere using constant forcings, Journal of Geophysical Research, 115, D18110. https://doi.org/10.1029/2009JD013020, 2010.
 - Millán, L. F., Livesey, N. J., Santee, M. L., Neu, J. L., Manney, G. L., and Fuller, R. A.: Case studies of the impact of orbital sampling on stratospheric trend detection and derivation of tropical vertical velocities: solar occultation vs. limb emission sounding, Atmos. Chem. and Phys., 16, 11 521–11 534, doi:10.5194/acp-16-11521-2016, 2016.
 - Morgenstern, O., Hegglin, M. I., Rozanov, E., O'Connor, F. M., Abraham, N. L., Akiyoshi, H., Archibald, A. T., Bekki, S., Butchart, N., Chipperfield, M. P., Deushi, M., Dhomse, S. S., Garcia, R. R., Hardiman, S. C., Horowitz, L. W., Joeckel, P., Josse, B., Kinnison, D., Lin, M., Mancini, E., Manyin, M. E., Marchand, M., Marecal, V., Michou, M., Oman, L. D., Pitari, G., Plummer, D. A., Revell, L. E., Saint-Martin, D., Schofield, R., Stenke, A., Stone, K., Sudo, K., Tanaka, T. Y., Tilmes, S., Yamashita, Y., Yoshida, K., and Zeng, G.: Review of the global models used within phase 1 of the Chemistry-Climate Model Initiative (CCMI), Geosci. Model Dev., 10, 639–671, https://doi.org/10.5194/gmd-10-639-2017, 2017.
 - Nair, P., Godin-Beekmann, S., Kuttippurath, J., Ancellet, G., Goutail, F., Pazmino, A., Froidevaux, L., Zawodny, J. M., Evans, R. D., Wang, H. J., Anderson, J., and Pastel, M.: Ozone trends derived from the total column and vertical profiles at a northern mid-latitude station, Atmos. Chem. Phys., 13, 10373-10384, www.atmos-chem-phys.net/13/10373/2013/, doi:10.5194/acp-13-10373-2013, 2013.
 - Nair, P. J., Froidevaux, L., Kuttippurath, J., Zawodny, J. M., Russell III, J. M., Steinbrecht, W., Claude, H., Leblanc, T., van Gijsel, J. A. E., Johnson, B., Swart, D. P. J., Thomas, A., Querel, R., Wang, R., and Anderson, J.: Subtropical and midlatitude ozone trends in the stratosphere: Implications for recovery, J. Geophys. Res., 120, 7247-7257, doi:10.1002/2014JD022371, 2015.
- Nedoluha, G. E., Gomez, R. M., Hicks, B. C., Wrotny, J. E., Boone, C., and Lambert, A.: Water vapor measurements in the mesosphere from Mauna Loa over solar cycle 23, J. Geophys. Res., 114, D23303, doi:10.1029/2009JD012504, 2009.
- Nisbet, E. G., Dlugokencky, E. J., Manning, M. R., Lowry, D., Fisher, R. E., France, J. L., Michel, S. E., Miller, J. B., White, J. W. C., Vaughn, B., Bousquet, P., Pyle, J. A., Warwick, N. J., Cain, M., Brownlow, R.,

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

- Zazzeri, G., Lanoisellé, M., Manning, A. C., Gloor, E., Worthy, D. E. J., Brunke, E.-G., Labuschagne, C., Wolff, E. W., and
 Ganesan, A. L.: Rising atmospheric methane: 2007–2014 growth and isotopic shift, Global Biogeochem. Cycles, 30, 1356–1370,
 doi:10.1002/2016GB005406, 2016.
- Oltmans, S. J., Vömel, H., Hofmann, D. J., Rosenlof, K. H., and Kley, D.: The increase in stratospheric water vapor from balloonborne, frostpoint hygrometer measurements at Washington, D.C., and Boulder, Colorado, Geophys. Res. Lett., 27, No. 21, 3453-3456, 2000.
 - Oram, D. E., et al.: A growing threat to the ozone layer from short-lived anthropogenic chlorocarbons, Atmos. Chem. Phys., 17, 11929–11941, https://doi.org/10.5194/acp-17-11929-2017, 2017.
- Orsolini, Y. J., Manney, G. L., Santee, M. L., and Randall, C. E.: An upper stratospheric layer of enhanced HNO₃ following exceptional solar storms, Geophys. Res. Lett., 32, L12S01, doi:10.1029/2004GL021588, 2005.
 - Parrondo, M. C., M. Gil, M., M. Yela, M., B. J. Johnson, B. J., and Ochoa, H. A.: Antarctic ozone variability inside the polar vortex estimated from balloon measurements, Atmos. Chem. Phys., 14, 217–229, www.atmos-chem-phys.net/14/217/2014/, doi:10.5194/acp-14-217-2014, 2014.
 - Perliski, L. M., Solomon, S., and London, J.: On the interpretation of seasonal variations of stratospheric ozone, Planet. Space Sci., 37, 12, 1527-1538, 1989.
 - Popp, P. J., Marcy, T. P., Watts, L. A., Gao, R. S., Fahey, D. W., Weinstock, E. M., Smith, J. B., Herman, R. L., Troy, R. F., Webster, C. R., Christensen, L. E., Baumgardner, D. G., Voigt, C., Kärcher, B., Wilson, J. C., Mahoney, M. J., Jensen, E. J., and Bui, T. P.: Condensed-phase nitric acid in a tropical subvisible cirrus cloud, Geophys. Res. Lett., 34, L24812, doi:10.1029/2007GL031832, 2007.
 - Popp, P. J., et al.: Stratospheric correlation between nitric acid and ozone, J. Geophys. Res., 114, D03305, doi:10.1029/2008JD010875, 2009.
 - Randall, C. E., Harvey, V. L., Singleton, C. S., Bailey, S. M., Bernath, P. F., Codrescu, M., Nakajima, H., and Russell III, J. M.: Energetic particle precipitation effects on the southern hemisphere stratosphere in 1992–2005, J. Geophys. Res., 112, D08308, doi:10.1029/2006JD007696, 2007.
 - Randel, W. J., Wu, F., and Gaffen, D. J.: Interannual variability of the tropical tropopause derived from radiosonde data and NCEP reanalysis, J. Geophys. Res., 105, 15,509-15,523, 2000.
 - Randel, W. J., Wu, F., Oltmans, S. J., Rosenlof, K., and Nedoluha, G. E.: Interannual changes of stratospheric water vapor and correlations with tropical tropopause temperatures, J. Atmos. Sci., 61, 2133–2148, 2004.
 - Randel, W. J., Wu, F., Vömel, H., Nedoluha, G. E., and Forster, P.: Decreases in stratospheric water vapor after 2001: Links to changes in the tropical tropopause and the Brewer–Dobson circulation, J. Geophys. Res., 111, D12312, doi:10.1029/2005JD006744, 2006.
 - Randel, W. J., and Thompson, A. M.: Interannual variability and trends in tropical ozone derived from SAGE II satellite data and SHADOZ ozonesondes, J. Geophys. Res., 116, D07303, doi:10.1029/2010JD015195, 2011.
 - Randel, W. J., and Jensen, E. J.: Physical processes in the tropical tropopause layer and their roles in a changing climate, Nat. Geosci., 6, 169–176, doi:10.1038/ngeo1733, 2013.
- Ray, E. A., Holton, J. R., Fishbein, E., Froidevaux, L., and Waters, J.: The tropical semiannual oscillations in temperature and ozone as observed by the MLS, J. Atmos. Sci., 51, 3045-3052, doi:10.1175/1520-0469(1994)051<3045:TTSOIT>2.0.CO;2, 1994.
- Read, W. G., Lambert, A., Bacmeister, J., Cofield, R. E., Christensen, L. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J., Fetzer, E., Froidevaux, L., Fuller, R., Herman, R., Jarnot, R. F., Jiang, J. H., Jiang, Y. B., Kelly, K., Knosp, B. W., Kovalenko, L. J., Livesey, N. J., Liu, H.-C., Manney, G. L., Pickett, H. M., Pumphrey, H. C., Rosenlof, K. H., Sabounchi, X., Santee, M. L., Schwartz, M. J., Snyder, W. V., Stek, P. C., Su, H., Takaes, L. L., Thurstans, R. P., Vömel, H., Wagner, P. A., Waters, J. W., Web-ster, C. R., Weinstock, E. M., and Wu, D. L.: Aura Microwave Limb Sounder upper tropospheric and lower stratospheric H₂O and relative humidity with respect to ice validation, J. Geophys. Res., 112, D24S35, doi:10.1029/2007JD008752, 2007.

Manuscript under review for journal Atmos. Chem. Phys.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

17

40

41

42

43 44

45

46

47 48

49

50

54 55

56

- Read, W. G., Schwartz, M. J., Lambert, A., Su, H., Livesey, N. J., Daffer, W. H., and Booe, C. D.: The roles of convection, extratropical mixing, and in-situ freeze-drying in the Tropical Tropopause Layer, Atmos. Chem. Phys., 8, 6051–6067, doi:10.5194/acp-8-6051-2008, 2008.
- Reddmann, T., Ruhnke, R., Versick, S., and Kouker, W.: Modeling disturbed stratospheric chemistry during solar-induced NOx enhancements observed with MIPAS/ENVISAT, J. Geophys. Res., 115, D00I11, doi:10.1029/2009JD012569, 2010.
- Rienecker, M., Suarez, M. J., Gelaro, R., Todling, R., Bacmeister, J., Liu, E., Bosilovich, M. G., Schubert, S. D., Takacs, L., Kim, G.-K., Bloom, S., Chen, J., Collins, D., Conaty, A., da Silva, A., Gu, W., Joiner, J., Koster, R. D., Lucchesi, R., Molod, A., Owens, T., Pawson, S., Pegion, P., Redder, C. R., Reichle, R., Robertson, J., F. R., Ruddick, A. G., Sienkiewicz, M., and Woollen, J.: MERRA: NASA's Modern-Era Retrospective Analysis for Research and Applications, J. Climate, 24, 3624–3648,
- 12 doi:10.1175/JCLI-D-11-00015.1, 2011.
- Rinsland, C. P., Gunson, M. R., Abrams, M. C., Lowes, L. L., Zander, R., Mahieu, E., Goldman, A., Ko, M. K W., Rodriguez, J.
 M., and Sze, N. D.: Heterogeneous conversion of N₂O₅ to HNO₃ in the post-Mount Pinatubo eruption stratosphere, J. Geophys.
 Res., 99, 8213-8219, 1994.
- Rohs, S., Schiller, C., Riese, M., Engel, A., Schmidt, U., Wetter, T., Levin, I., Nakazawa, T., and Aoki, S.: Long-term changes of methane and hydrogen in the stratosphere in the period 1978–2003 and their impact on the abundance of stratospheric water vapor, J. Geophys. Res., 111, D14315, doi:10.1029/2005JD006877, 2006.
- Rosenlof, K. H., and Reid, G. R.: Trends in the temperature and water vapor content of the tropical lower stratosphere: Sea surface connection, J. Geophys. Res., 113, D06107, doi:10.1029/2007JD009109, 2008.
- Ryan, N. J., Kinnison, D. E., Garcia, R. R., Hoffmann, C. G., Palm, M., Raffalski, U., and Notholt, J.: Assessing the ability to derive rates of polar middle-atmospheric descent using trace gas measurements from remote sensors, Atmos. Chem. Phys., 18, 1457–1474, https://doi.org/10.5194/acp-18-1457-2018, 2018.
- Santee, M. L., Lambert, A., Read, W. G., Livesey, N. J., Cofield, R. E., Cuddy, D. T., Daffer, W. H., Drouin, B. J., Froidevaux,
 L., Fuller, R. A., Jarnot, R. F., Knosp, B. W., Manney, G. L., Perun, V. S., Snyder, W. V., Stek, P. C., Thurstans, R. P., Wagner,
 P. A., Waters, J. W., Muscari, G., de Zafra, R. L., Dibb, J. E., Fahey, D. W., Popp, P. J., Marcy, T. P., Jucks, K. W., Toon, G. C.,
 Stachnik, R. A., Bernath, P. F., Boone, C. D., Walker, K.A., Urban, J., and Murtagh, D.: Validation of the Aura Microwave Limb
 Sounder HNO3 measurements, J. Geophys. Res., 112, D24S40, doi:10.1029/2007JD008, 2007.
- Santer, B. D., Wigley, T. M. L., Boyle, J. S., Gaffen, D. J., Hnilo, J. J., Nychka, D., Parker, D. E., and Taylor, K. E.: Statistical significance of trends and trend differences in layer-average atmospheric temperature time series, J. Geophys. Res., 105, 7337-7356, 2000.
- Scaife, A. A., Jackson, D. R., R. Swinbank, R., Butchart, N., Thornton, H. E., Keil, M., and Henderson, L.: Stratospheric
 Vacillations and the Major Warming over Antarctica in 2002, J. Atmos. Sci., 62, 629-639, 2005.
 - Schaefer, H., Mikaloff Fletcher, S. E., Veidt, C., Lassey, K. R., Brailsford, G. W., Bromley, T. M., Dlugokencky, E. J., Michel, S. E., Miller, J. B., Levin, I., Lowe, D. C., Martin, R. J., Vaughn, B. H., and White, J. W. C.: A 21st century shift from fossil-fuel to biogenic methane emissions indicated by ¹³CH₄, Science, doi:10.1126/science.aad2705, 2016.
 - Scherer, M., Vömel, H., Fueglistaler, S., Oltmans, S. J., and Staehelin, J.: Trends and variability of midlatitude stratospheric water vapour deduced from the re-evaluated Boulder balloon series and HALOE, Atmos. Chem. Phys., 8, 1391-1402, https://doi.org/10.5194/acp-8-1391-2008, 2008.
 - Schoeberl, M. R., Douglass, A. R., Newman, P. A., Lait, L. R., Lary, D., Waters, J., Livesey, N., Froidevaux, L., Lambert, A., Read, W., Filipiak, M. J., and Pumphrey, H. C.: QBO and annual cycle variations in tropical lower stratosphere trace gases from HALOE and Aura MLS observations, J. Geophys. Res., 113, D05301, doi:10.1029/2007JD008678, 2008.
- 51
 52 Schoeberl, M. R., Dessler, A. E., and Wang, T.: Modeling upper tropospheric and lower stratospheric water vapor anomalies,
 53 Atmos. Chem. Phys., 13, 7783–7793, https://doi.org/10.5194/acp-13-7783-2013, 2013.
 - Siskind, D. E., Nedoluha, G. E., Randall, C. E., Fromm, M., and Russell III, J. M.: An assessment of Southern Hemisphere stratospheric NOx enhancements due to transport from the upper atmosphere, Geophys. Res. Lett., 27, 329–332, 2000.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1 Smith, A. K., Garcia, R. R., Moss, A. C., and Mitchell, N. J.: The semiannual oscillation of the tropical zonal wind in the middle 2 atmosphere derived from satellite geopotential height retrievals, J. Atmos. Sci., 74, 2413-2425, doi:10.1175/JAS-D-17-0067.1, 3 2017.

Solomon, S., Rosenlof, K., Portmann, R., Daniel, J., Davis, S., Sanford, T., and Plattner, G.-K.: Contributions of Stratospheric
 Water Vapor to Decadal Changes in the Rate of Global Warming, Science, 237, 1219-1223, doi:10.1126/science.1182488, 2010.

Solomon, S., Kinnison, D. E., Bandoro, J., and Garcia, R.: Simulations of Polar Ozone Depletion: An Update, J. Geophys. Res., 120, 7958-7974, doi:10.1002/2015JD0233652015, 2015.

Solomon, S., Ivy, D. J., Kinnison, D., Mills, M. J., Neely III, R. R., and Schmidt, A.: Emergence of healing in the Antarctic ozone layer, Science, 353, 269–274, 2016.

SPARC, 2010: SPARC CCMVal Report on the Evaluation of Chemistry-Climate Models, Eyring, V., Shepherd, T., and Waugh, D. (Eds.), SPARC Report No. 5, WCRP-30/2010, WMO/TD – No. 40, available at www.sparc-climate.org/publications/sparc-reports/, 2010.

SPARC, 2017: The SPARC Data Initiative: Assessment of stratospheric trace gas and aerosol climatologies from satellite limb sounders, M. I. Hegglin and S. Tegtmeier (Eds.), SPARC Report No. 8, WCRP-05/2017, doi:10.3929/ethz-a-010863911, available at www.sparc-climate.org/publications/sparc-reports/, 2017.

Steinbrecht, W., Froidevaux, L., Fuller, R., Wang, R., Anderson, J., Roth, C., Bourassa, A., Degenstein, D., Damadeo, R., Zawodny, J., Frith, S., McPeters, R., Bhartia, P., Wild, J., Long, C., Davis, S., Rosenlof, K., Sofieva, V., Walker, K., Rahpoe, N., Rozanov, A., Weber, M., Laeng, A., von Clarmann, T., Stiller, G., Kramarova, N., Godin-Beekmann, S., Leblanc, T., Querel, R., Swart, D., Boyd, I., Hocke, K., Kämpfer, N., Maillard Barras, E., Moreira, L., Nedoluha, G., Vigouroux, C., Blumenstock, T., Schneider, M., Garcia, O., Jones, N., Mahieu, E., Smale, D., Kotkamp, M., Robinson, J., Petropavlovskikh, I., Harris, N., Hassler, B., Hubert, D. and Tummon, F.: An update on ozone profile trends for the period 2000 to 2016, Atmos. Chem. Phys. Discuss., 2017, 1–24, doi:10.5194/acp-2017-391, 2017.

Stiller, G. P., Mengistu Tsidu, G., von Clarmann, T., Glatthor, N., Höpfner, M., Kellmann, S., Linden, A., Ruhnke, R., Fischer, H., Lopez-Puertas, M., Funke, B., and Gil-Lopez, S.: An enhanced HNO3 second maximum in the Antarctic midwinter upper stratosphere 2003, J. Geophys. Res., 110, D20303, doi:10.1029/2005JD006011, 2005.

Stolarski, R., Douglass, A., and Strahan, S. E.: Using satellite measurements of N_2O to remove dynamical variability from HCl measurements, Atmos. Chem. Phys., 18, 5691–5697, https://doi.org/10.5194/acp-18-5691-2018, 2018.

Stone, K. A., Solomon, S., and Kinnison, D. E.: On the identification of ozone recovery, Geophys. Res. Lett., in press, doi:10.1029/2018GL077955, 2018.

Strahan, S. E., Oman, L. D., Douglass, A. R., and L. Coy, L.: Modulation of Antarctic vortex composition by the quasi-biennial oscillation, Geophys. Res. Lett., 42, 4216–4223, doi:10.1002/2015GL063759, 2015.

Tegtmeier, S., Hegglin, M. I., Anderson, J., Bourassa, A., Brohede, S., Degenstein, D., Froidevaux, L., Fuller, R., Funke, B., Gille, J., Jones, A., Kasai, Y., Krüger, K., Kyrölä, E., Lingenfelser, G., Lumpe, J., Nardi, B., Neu, J., Pendlebury, D., Remsberg, E., Rozanov, A., Smith, L., Toohey, M., Urban, J., von Clarmann, T., Walker, K. A., and Wang, H. J.: The SPARC Data Initiative: A comparison of ozone climatologies from international satellite limb sounders, J. Geophys. Res. Atmos., 118, 12,229–12,247, doi: 10.1002/2013JD019877, 2013.

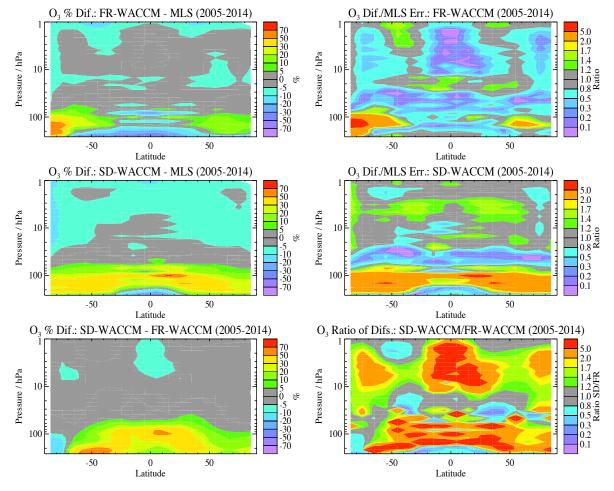
Tian, W., and Chipperfield, M. P.: Stratospheric water vapor trends in a coupled chemistry-climate model, Geophys. Res. Lett., 33, L06819, doi:10.1029/2005GL024675, 2006.

Tiao, G. C., Reinsel, G. C., Xu, D., Pedrick, J. H., Zhu, X., Miller, A. J., DeLuisi, J. J., Mateer, C. L., and Wuebbles, D. J.: Effects of autocorrelation and temporal sampling schemes on estimates of trend and spatial correlation, J. Geophys Res., 95, 20,507-20,517, 1990.

Tilmes, S., Lamarque, J.-F., Emmons, L. K., Kinnison, D., Marsh, D., Garcia, R. R., Smith, A. K., Neeley, R. R., Conley, A., Vitt, F., Val Martin, M., Tanimoto, H., Simpson, I., Blake, D. R., and Blake, N.: Representation of the Community Earth System Model (CESM1) CAM4-Chem within the Chemistry-Climate Model Initiative, Geosci. Model Dev., 9, 1853-1890, doi:10.5194/gmd-9-1853-2016, 2016.

Discussion started: 13 June 2018

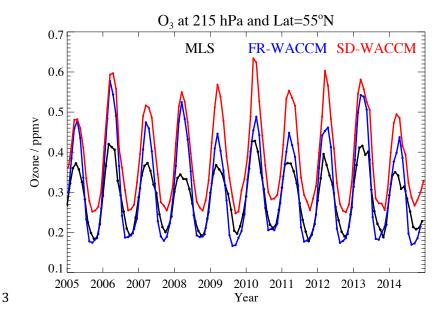
© Author(s) 2018. CC BY 4.0 License.



- Toohey, M., Hegglin, M. I., Tegtmeier, S., Anderson, J., Añel, J. A., Bourassa, A., Brohede, S., Degenstein, D., Froidevaux, L.,
 Fuller, R., Funke, B., Gille, J., Jones, A., Kasai, Y., Krüger, K., Kyrölä, E., Neu, J. L., Rozanov, A., Smith, L., Urban, J., von
 Clarmann, T., Walker, K. A., and Wang, R.: Characterizing sampling bias in the trace gas climatologies of the SPARC Data
 Initiative, J. Geophys. Res. Atmos., 118, 11,847–11,862, doi: 10.1002/jgrd.5087, 2013.
 Tummon, F., Hassler, B., Harris, N. R. P., Staehelin, J., Steinbrecht, W., Anderson, J., Bodeker, G. E., Bourassa, A., Davis, S.
 M., Degenstein, D., Frith, S. M., Froidevaux, L., Kyrölä, E., Laine, M., Long, C., Penckwitt, A. A., Sioris, C. E., Rosenlof, K.
 - Tummon, F., Hassler, B., Harris, N. R. P., Staehelin, J., Steinbrecht, W., Anderson, J., Bodeker, G. E., Bourassa, A., Davis, S. M., Degenstein, D., Frith, S. M., Froidevaux, L., Kyrölä, E., Laine, M., Long, C., Penckwitt, A. A., Sioris, C. E., Rosenlof, K. H., Roth, C., Wang, H.-J., and Wild, J.: Intercomparison of vertically resolved merged satellite ozone data sets: interannual variability and long-term trends, Atmos. Chem. Phys., 15, 3021-3043, https://doi.org/10.5194/acp-15-3021-2015, 2015.
 - Urban, J., Lossow, S., Stiller, G., and Read, W.: Another drop in water vapor, EOS Transactions, American Geophysical Union, 95, 27, 245-252, doi:10.1002/2014EO270001, 2014.
 - Verronen, P. T., Santee, M. L., Manney, G. L., Lehmann, R., Salmi, S.-M. and A. Seppälä.: Nitric acid enhancements in the mesosphere during the January 2005 and December 2006 solar proton events, J. Geophys. Res., 116, D17301, doi:10.1029/2011JD016075, 2011.
 - von Clarmann, T., Glatthor, N., H'opfner, M., Kellmann, S., Ruhnke, R., Stiller, G. P., and Fischer, H.: Experimental evidence of perturbed odd hydrogen and chlorine chemistry after the October 2003 solar proton events, J. Geophys. Res., 110, A09S45, doi:10.1029/2005JA011053, 2005.
 - Vömel, H., Barnes, J. E., Forno, R. N., Fujiwara, M., Hasebe, F., Iwasaki, S., Kivi, R., Komala, N., Kyrölä, E., Leblanc, T., Morel, B., Ogino, S.-Y., Read, W. G., Ryan, S. C., Saraspriya, S., Selkirk, H., Shiotani, M., Valverde Canossa, J., and Whiteman, D. N.: Validation of Aura Microwave Limb Sounder water vapor by balloon-borne Cryogenic Frost point Hygrometer measurements, J. Geophys. Res., 112, D24S37, doi:10.1029/2007JD008698, 2007.
 - Wang, Y., Su, H., Jiang, J. H., Livesey, N. J., Santee, M. L., Froidevaux, L., Read, W. G., and Anderson, J.: The linkage between stratospheric water vapor and surface temperature in an observation-constrained coupled general circulation model, Clim. Dyn., doi:10.1007/s00382-016-3231-3, 2016.
 - Waters, J. W., Froidevaux, L., Read, W. G., Manney, G. L., Eslon, L. S., Flower, D. A., Jarnot, R. F., and Harwood, R. S.: Stratospheric ClO and ozone from the Microwave Limb Sounder on the Upper Atmosphere Research Satellite, Nature, 362, 597-602, 1993.
 - Waters, J. W., Froidevaux, L., Harwood, R. S., Jarnot, R. F., Pickett, H. M., Read, W. G., Siegel, P. H., Cofield, R. E., Filipiak, M. J., Flower, D. A., Holden, J. R., Lau, G. K., Livesey, N. J., Manney, G. L., Pumphrey, H. C., Santee, M. L., Wu, D. L., Cuddy, D. T., Lay, R. R., Loo, M. S., Perun, V. S., Schwartz, M. J., Stek, P. C., Thurstans, R. P., Boyles, M. A., Chandra, S., Chavez, M. C., Chen, G.-S., Chudasama, B. V., Dodge, R., Fuller, R. A., Girard, M. A., Jiang, J. H., Jiang, Y., Knosp, B. W., LaBelle, R. C., Lam, J. C., Lee, K. A., Miller, M., Oswald, J. E., Patel, N. C., Pukala, D. M., Quintero, O., Scaff, D. M., Snyder, W. V., Tope, M. C., Wagner, P. A., and Walch, M. J.: The Earth Observing System Microwave Limb Sounder (EOS MLS) on the Aura satellite, IEEE Trans. Geosci. Remote Sens., 44 (5), 1075–1092, doi:10.1109/TGRS.2006.873771, 2006.
 - Waugh, D. W., Considine, D. B., and Fleming, E. L.: Is upper stratospheric chlorine decreasing as expected?, Geophys. Res. Lett., 28(7), 1187–1190, doi:10.1029/2000GL011745, 2001.
 - Waugh, D. W., and Eyring, V.: Quantitative performance metrics for stratospheric-resolving chemistry-climate models, Atmos. Chem. Phys., 8, 5699–5713, www.atmos-chem-phys.net/8/5699/2008/, 2008.
 - Weatherhead, E. C., Reinsel, G. C., Tiao, G. C., Meng, X.-L., Choi, D., Cheang, W.-K., Keller, T., DeLuisi, J., Wuebbles, D. J., Kerr, J. B., Miller, A. J., Oltmans, S. J., and Frederick, J. E.: Factors affecting the detection of trends: Statistical considerations and applications to environmental data, J. Geophys. Res.-Atmos., 103, 17149–17161, https://doi.org/10.1029/98JD00995, 1998.
- Wegner, T., Kinnison, D. E., Garcia, R. R., and Solomon, S.: Simulation of polar stratospheric clouds in the specified dynamics
 version of the whole atmosphere community climate model, J. Geophys. Res., 4991–5002, https://doi.org/10.1002/jgrd.50415,
 2013.
 - WMO: Scientific Assessment of Ozone Depletion: 2014, Global Ozone Research and Monitoring Project-Report No. 55, WMO (World Meteorological Organization), Geneva, Switzerland, available at: https://www.esrl.noaa.gov/csd/assessments/ozone, 2014

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-546 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 13 June 2018 © Author(s) 2018. CC BY 4.0 License.

Figure 1. The left panels show percent differences ((model-data) divided by data) for binned climatological average O_3 from 2005 through 2014 (see Fig. S1 for these averages), for (top panel) the free-running model (average of 3 realizations) FRWACCM, (middle panel) the specified dynamics model version SD-WACCM, and (bottom panel) SD-WACCM minus FRWACCM, also as a percent difference. The two top right panels give ratios of the absolute value of average model (FR-WACCM in top panel, SD-WACCM in middle panel) minus average MLS O_3 to the MLS systematic O_3 errors, based on the climatological fields and estimated MLS errors (2σ estimates, see text and Fig. S2). The bottom right panel gives the ratios of average absolute differences between SD-WACCM and MLS to those differences for FR-WACCM and MLS; e.g., this shows that upper stratospheric tropical SD-WACCM mean O_3 is larger than O_3 from FR-WACCM, which is why SD-WACCM matches MLS better there (see top 2 right panels).


Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1 2

Figure 2. Monthly mean ozone time series at 215 hPa and the 55°N latitude bin (for averages over 50°N-60°N) from MLS, FR-WACCM, and SD-WACCM (see legend for color coding).

© Author(s) 2018. CC BY 4.0 License.

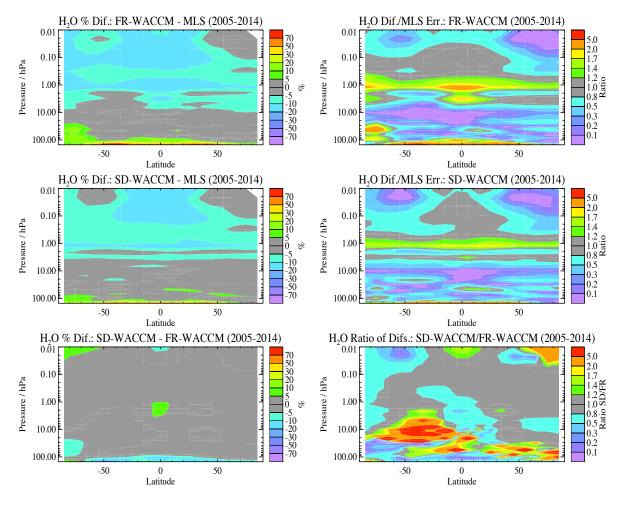


Figure 3. Same as Fig.1, but for stratospheric and mesospheric water vapor.

© Author(s) 2018. CC BY 4.0 License.

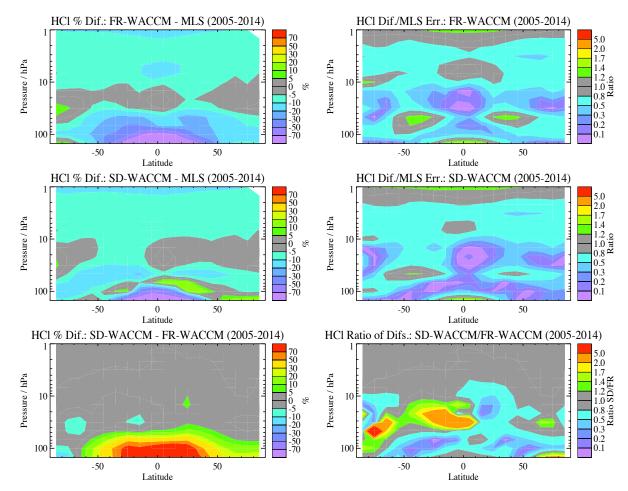


Figure 4. Same as Fig. 1, but for stratospheric HCl.

© Author(s) 2018. CC BY 4.0 License.

1 2

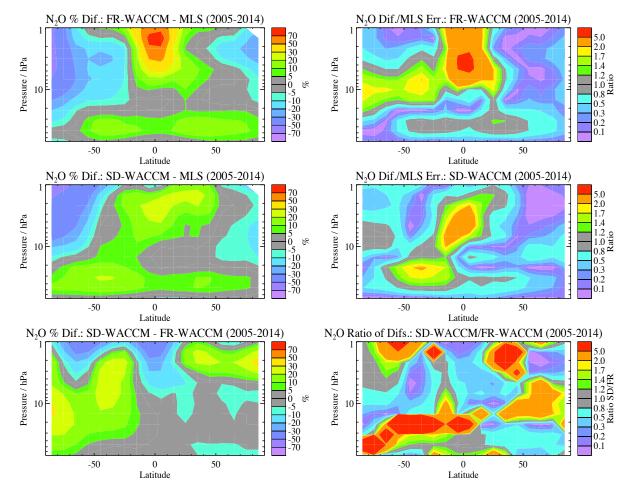
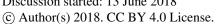



Figure 5. Same as Fig. 1, but for stratospheric N₂O.

Discussion started: 13 June 2018

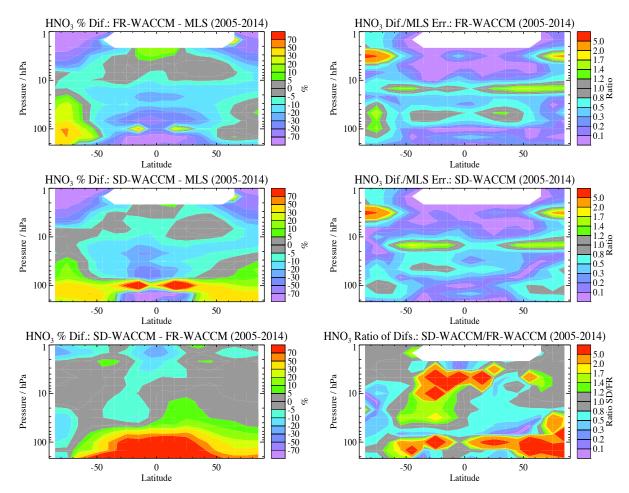
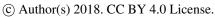
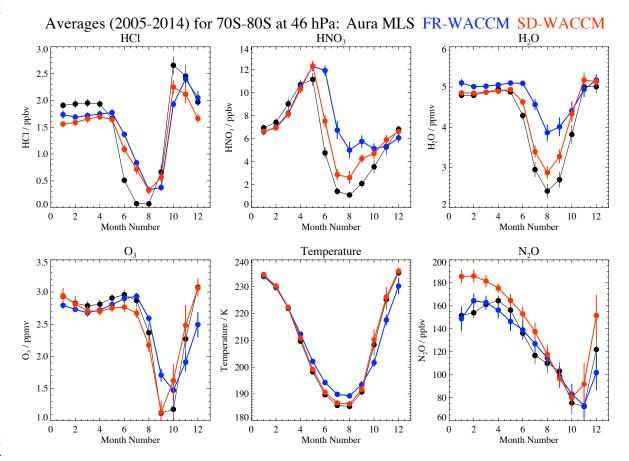
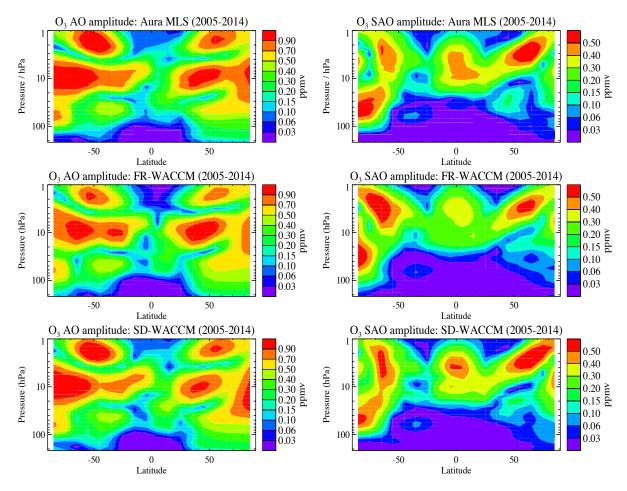



Figure 6. Same as Fig. 1, but for stratospheric HNO₃.

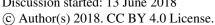
Discussion started: 13 June 2018

1 2




Figure 7. Each of the panels shows average seasonal changes from 2005-2014 for the $70^{\circ}S-80^{\circ}S$ region at 46 hPa. Data values (black) are from Aura MLS and model comparisons (FR-WACCM in blue, SD-WACCM in red) are provided for HCl (top left), HNO₃ (top center), H₂O (top right), O₃ (bottom left), temperature (bottom center), and N₂O (bottom right). For each month, the error bars represent twice the standard errors in the means, based on the set of 10 monthly averages (from 2005 through 2014).

© Author(s) 2018. CC BY 4.0 License.



1 2

Figure 8. Amplitude of the stratospheric ozone annual cycle (left panels) and semi-annual cycle (right panels) for Aura MLS (top), FR-WACCM (middle), and SD-WACCM (bottom), based on fits to time series from 2005 through 2014.

Discussion started: 13 June 2018

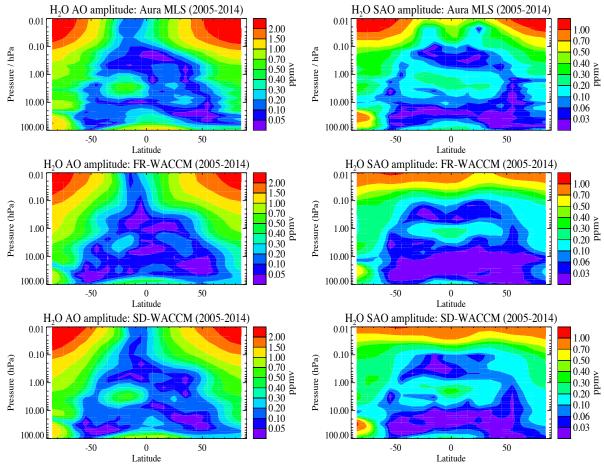


Figure 9. Same as Fig. 8, but for H₂O annual and semi-annual cycles in the stratosphere and mesosphere.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-546 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

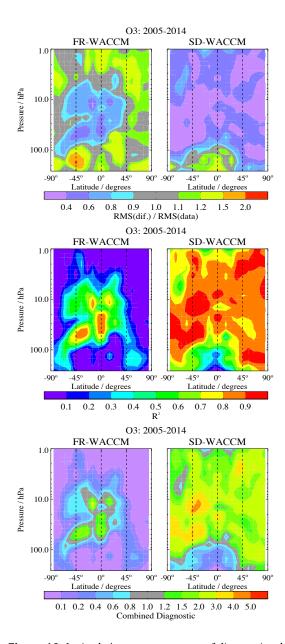


Figure 10. Latitude/pressure contours of diagnostics that show how well the deseasonalized anomalies of model ozone time series (FR-WACCM at left, SD-WACCM, at right) compare to MLS O_3 anomaly series for 2005-2014. Top panels show the RMS difference diagnostic (see text) and middle panels show R^2 values; small RMS difference values represent a closer fit, while large R^2 values represent highly correlated results. The bottom panels provide a combined diagnostic, namely the ratio of R^2 to the RMS difference diagnostic from the top panels; larger values here represent a better result for comparisons to the observed time series.

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1 2

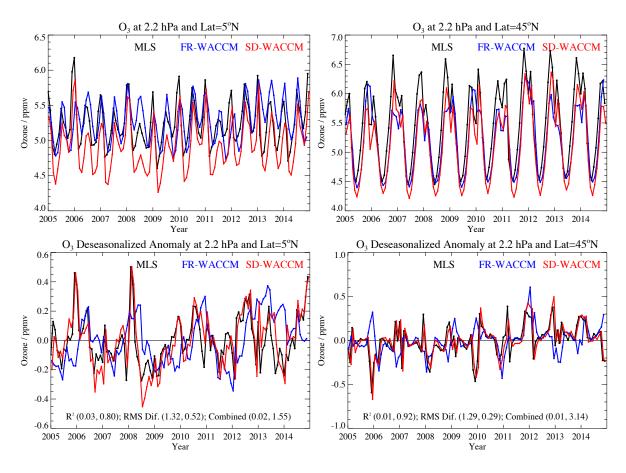


Figure 11. Time series of monthly zonal mean O_3 mixing ratios at 2.2 hPa (top panels) and deseasonalized anomalies (bottom panels), with the 0-10°N and 40°N-50°N latitude bins on the left and right, respectively. The two model time series (FR-WACCM in blue and SD-WACCM in red) are compared to the MLS series (in black) for 2005-2014. Diagnostic values (see text for a description) are shown in parentheses in the bottom two panels, with the 1st number referring to FR-WACCM and the 2nd number to SD-WACCM.

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-546 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 13 June 2018 © Author(s) 2018. CC BY 4.0 License.

1 2

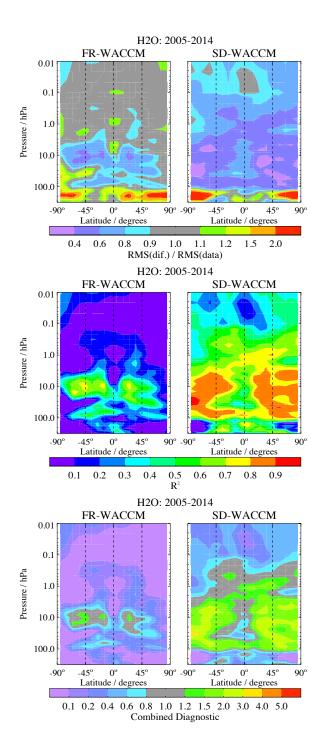


Figure 12. Same as the Fig. 10 diagnostics, but for H₂O up to 0.01 hPa.

© Author(s) 2018. CC BY 4.0 License.

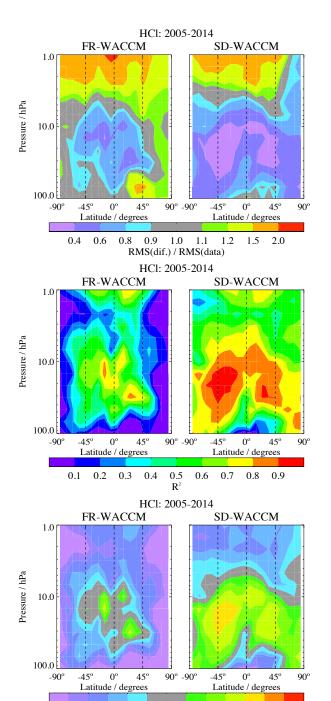


Figure 13. Same as the Fig. 10 diagnostics, but for stratospheric HCl.

0.1 0.2 0.4 0.6 0.8 1.0 1.2 1.5 2.0 3.0 4.0 5.0 Combined Diagnostic

Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-546 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 13 June 2018 © Author(s) 2018. CC BY 4.0 License.

1 2

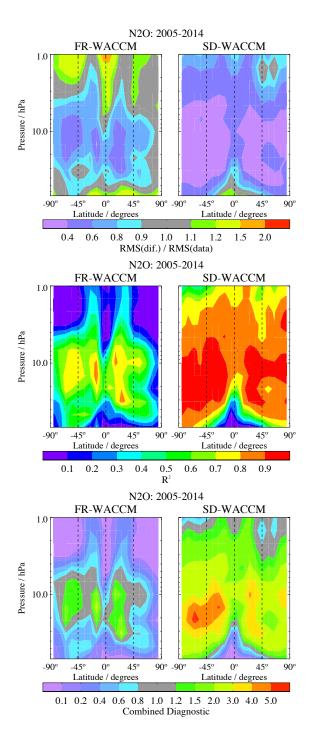
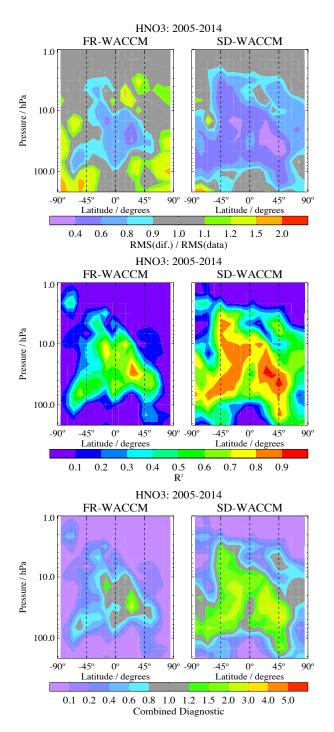
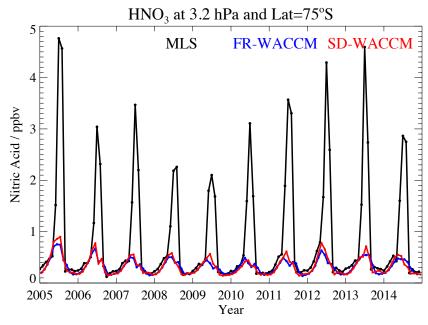


Figure 14. Same as the Fig. 10 diagnostics, but for N₂O (from 68 to 1 hPa).

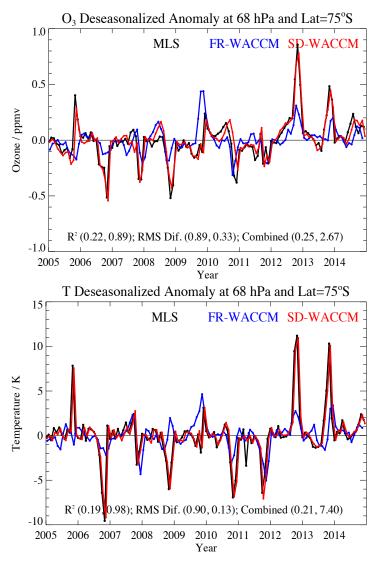
Atmos. Chem. Phys. Discuss., https://doi.org/10.5194/acp-2018-546 Manuscript under review for journal Atmos. Chem. Phys. Discussion started: 13 June 2018 © Author(s) 2018. CC BY 4.0 License.




Figure 15. Same as the Fig. 10 diagnostics, but for HNO₃ (from 215 to 1 hPa).

Discussion started: 13 June 2018

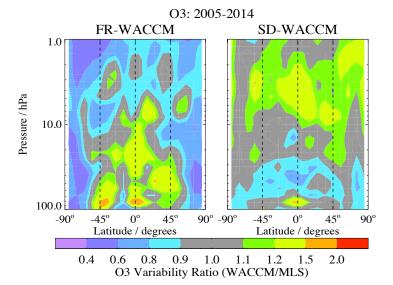
© Author(s) 2018. CC BY 4.0 License.

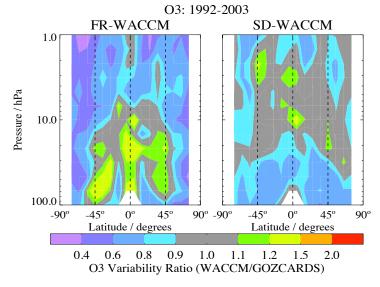

Figure 16. HNO₃ monthly zonal mean mixing ratio time series (2005 through 2014) from MLS, FR-WACCM, and SD-WACCM for 3.2 hPa and 70°S-80°S.

Discussion started: 13 June 2018

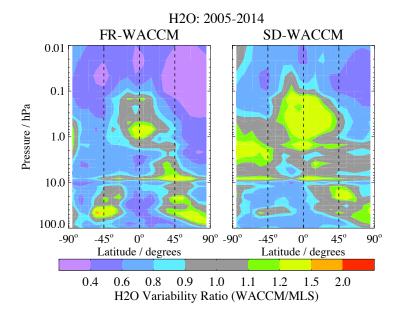
© Author(s) 2018. CC BY 4.0 License.

7


Figure 17. Deseasonalized anomaly time series (2005-2014) at 68 hPa and 70°S-80°S from Aura MLS, FR-WACCM, and SD-WACCM for ozone (top panel) and temperature (bottom panel); calculated values are provided in parentheses for the R², RMS fit, and combined diagnostics used in this work (the 1st number refers to FR-WACCM and the 2nd number to SD-WACCM).


© Author(s) 2018. CC BY 4.0 License.

1 2


Figure 18. Variability ratios (model results divided by data results) for stratospheric O₃, with FR-WACCM results on the left, and SD-WACCM on the right. Before calculating the ratios, the variability values are obtained as the root mean square of detrended deseasonalized monthly anomaly time series, and expressed as a percentage of mean (climatological) abundances; the top panels show comparisons to MLS data for 2005-2014, whereas the bottom panels are for 1992-2003 comparisons to GOZCARDS.

© Author(s) 2018. CC BY 4.0 License.

1 2

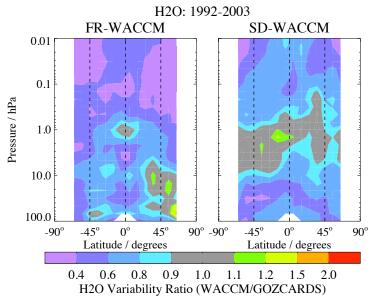
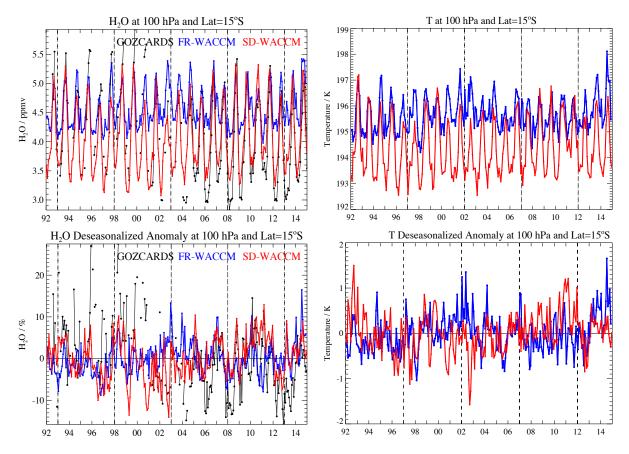
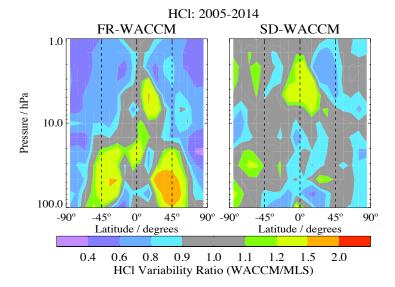


Figure 19. Same as Fig. 18, but for ratios (model/data) of H_2O stratospheric and mesospheric variability for two different time periods.


Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1 2


Figure 20. Time series (1992-2014) at 100 hPa and 10° S- 20° S for temperature (right two panels) and H_2O (left two panels), with deseasonalized anomalies shown in the bottom two panels. The temperature plots just show the two models (FR-WACCM in blue, SD-WACCM in red), whereas the H_2O series show the comparisons for the models versus GOZCARDS merged H_2O data (in black).

Discussion started: 13 June 2018 © Author(s) 2018. CC BY 4.0 License.

1 2

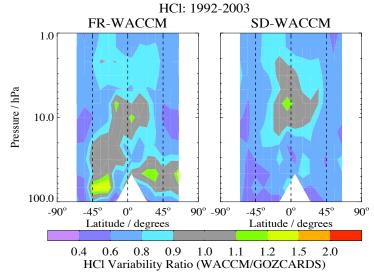
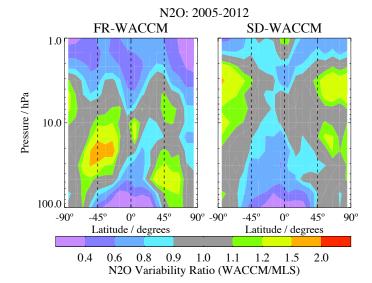


Figure 21. Same as Fig. 18, but for ratios (model/data) of HCl stratospheric variability.


Discussion started: 13 June 2018 © Author(s) 2018. CC BY 4.0 License.

Atmospheric Chemistry and Physics

Discussions

1 2

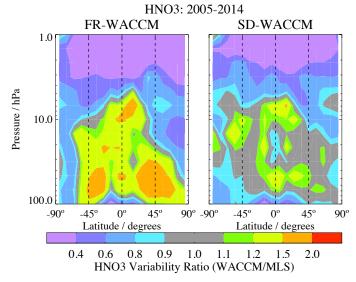
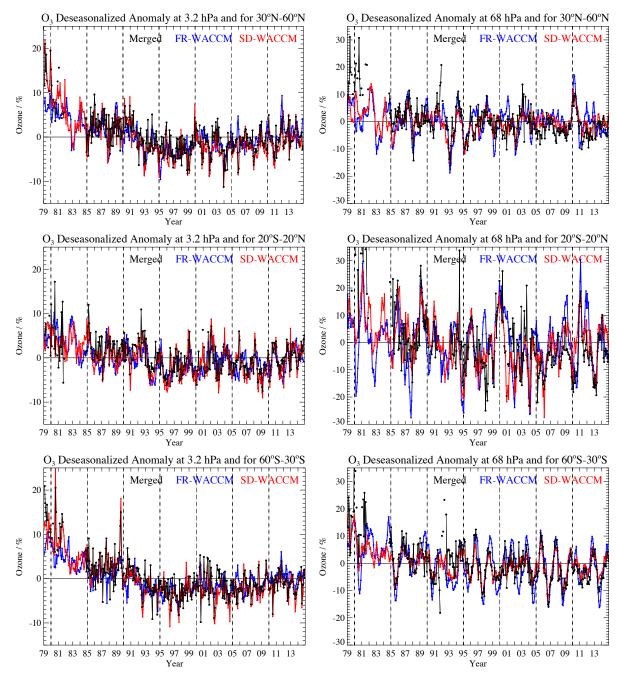



Figure 22. Same as Fig. 18, but for ratios (model/data) of the variability in stratospheric N_2O for 2005-2012 (top panels) and HNO_3 for 2005-2014 (bottom panels). The MLS N2O-640 product (see text) is used for the comparisons in the top panels.

Discussion started: 13 June 2018 © Author(s) 2018. CC BY 4.0 License.

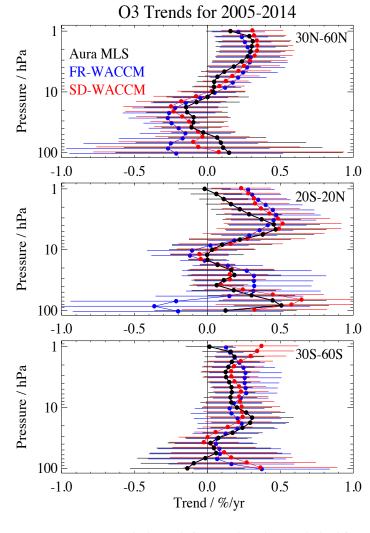


Figure 23. Sample time series of deseasonalized ozone anomalies (%) from 1979 through 2014 from the GOZCARDS data record (version 2.20) compared to the corresponding model anomalies from FR-WACCM (blue) and SD-WACCM (red). Upper stratospheric series at 3.2 hPa are shown in left panels and lower stratospheric series at 68 hPa are on the right; three latitude bins are displayed (30°N-60°N, top; 20°S-20°N, middle, and 30°S-60°S, bottom).

© Author(s) 2018. CC BY 4.0 License.

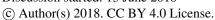
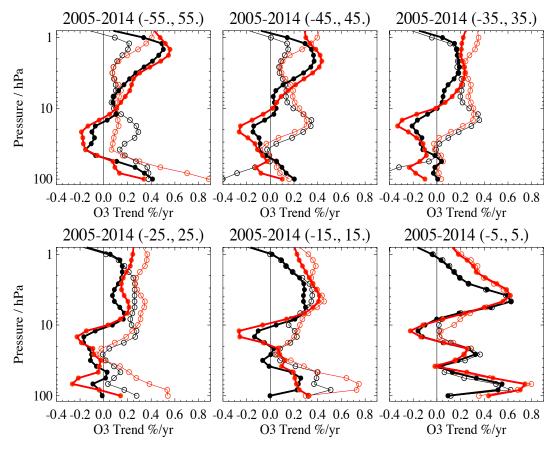
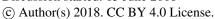


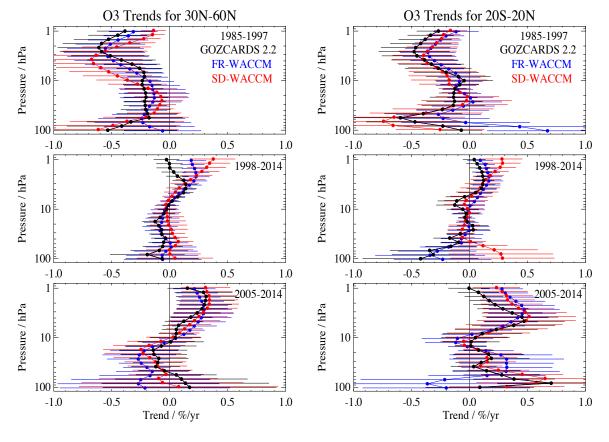
Figure 24. Ozone stratospheric trends for 2005 through 2014 obtained from monthly zonal mean data (version 4.2 Aura MLS) and models (FR-WACCM and SD-WACCM), after multiple linear regression analyses of deseasonalized anomaly time series, as described in the text. Each panel refers to results from different latitude band average series (see legend). The error bars are 2σ estimates based on bootstrap resampling results (see text).

Discussion started: 13 June 2018

Atmospheric § Chemistry and Physics Discussions

1 2


Figure 25. Ozone trends in different latitude bins for SD-WACCM (red) versus MLS data (black) for 2005-2014. Closed and open circles are for northern and southern latitude bins, respectively. For clarity, error bars are omitted here, as these generally show that model/data trend differences are not significant for this time period.

Discussion started: 13 June 2018

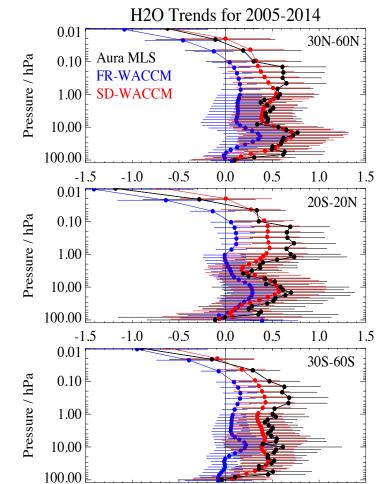


Figure 26. Same as Fig. 24 for ozone trend comparisons, except for the use of two latitude bands (30°N-60°N on left side and 20°S-20°N on right side) and three different time periods (from top to bottom panels, see legend); the data record here is from GOZCARDS merged ozone version 2.20 (see text).

© Author(s) 2018. CC BY 4.0 License.

-1.0

-1.5

-0.5

0.0

Trend / %/yr

0.5

Figure 27. Trends in three latitude bins for stratospheric and mesospheric H₂O from an analysis of the 2005-2014 MLS data and the two WACCM models over the same time period.

1.0

1.5

© Author(s) 2018. CC BY 4.0 License.

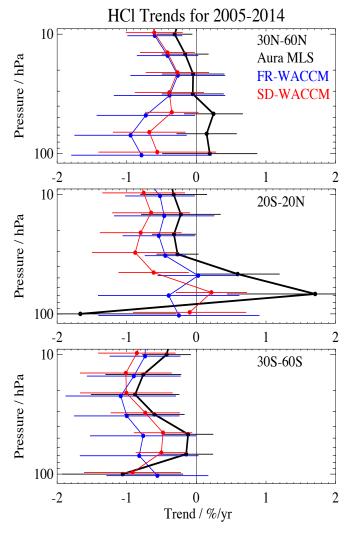
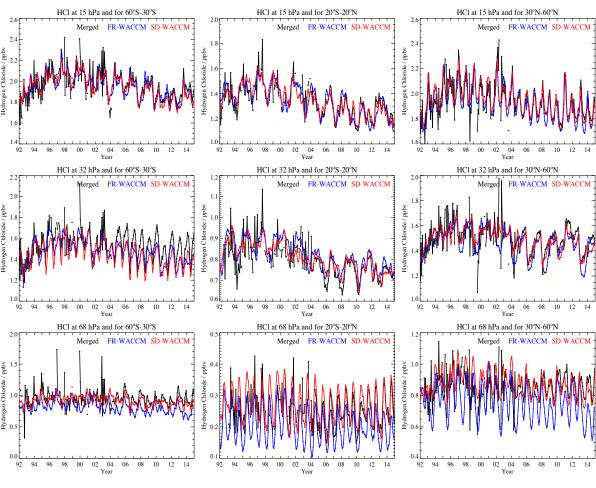


Figure 28. Same as Fig. 24, but for HCl data and model trends in the lower stratosphere.


Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1 2

Figure 29. Time series (1992-2014) of lower stratospheric HCl (ppbv) for the GOZCARDS HCl merged data record (black), as well as models (FR-WACCM in blue and SD-WACCM in red). Each panel is for a different pressure level and latitude bin, as labeled (15 hPa, top; 32 hPa, middle; 68 hPa, bottom); the three latitude bins used in this work are 30°S-60°S (left panels), 20°S-20°N (middle panels), and 30°N-60°N (right panels).

Discussion started: 13 June 2018

© Author(s) 2018. CC BY 4.0 License.

1 2

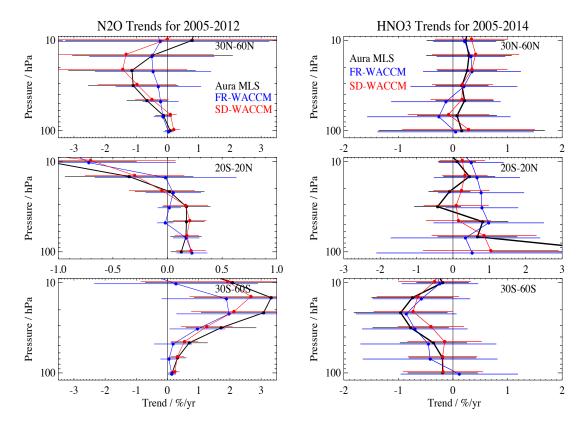
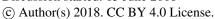



Figure 30. Same as Fig. 28, but for N_2O (left 3 panels) and HNO_3 (right 3 panels) data and model trends in the lower stratosphere. The N_2O data results are from the N_2O -640 MLS product (retrieved from the 640 GHz radiometer band data), which was discontinued in 2013 because of an instrument issue affecting this band (see text), and these data and model trends apply to the 2005-2012 period. The HNO_3 trend results (data and models) are for 2005-2014.

Discussion started: 13 June 2018

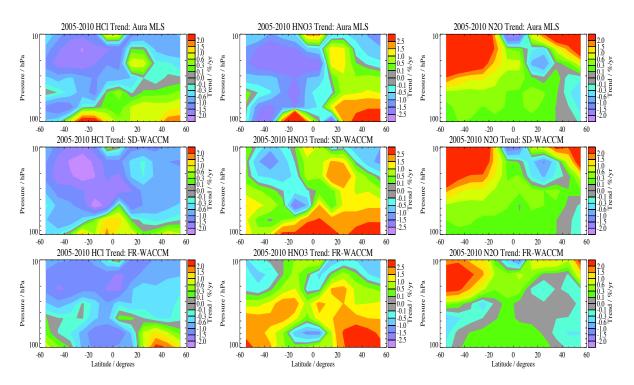
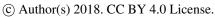
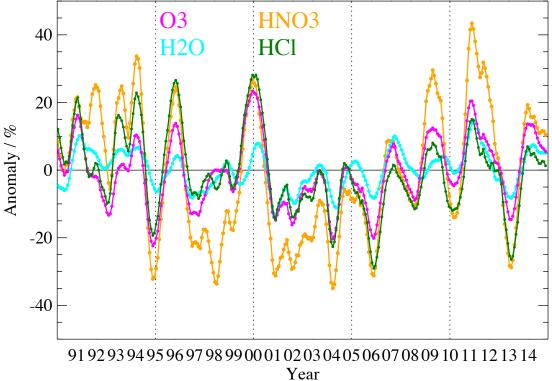



Figure 31. Pressure/latitude contour comparison of short-term (2005-2010) lower stratospheric trends from Aura MLS data (top panels) versus model trends (from SD-WACCM in middle panels and FR-WACCM in bottom panels). The left column is for HCl, the middle column for HNO_3 , and the right column is for N_2O (using data from the MLS 640 GHz radiometer band).

Discussion started: 13 June 2018



1 2

SD-WACCM % Anomalies at 68 hPa, 10°S-10°N **O**3 HNO3

3 4 5

6

Figure 32. 25-year simulation from SD-WACCM for 1990 through 2014, showing monthly mean deseasonalized anomalies (%) for O₃, H₂O, HNO₃, and HCl at 68 hPa for 10°S-10°N, in a region where dynamically-induced variations, both short- and longterm, appear to affect these species in similar ways. Some smoothing (using a running mean with a ±7-month window) has been applied to highlight the variations longer than a year.